Тема: Морфология бактерий. Морфология и физиология микроорганизмов

Микроорганизмов.

Форма и размеры микроорганизмов весьма разнообразны.

По форме выделяют следующие основные группы микроорганизмов.

1.Шаровидные или кокки (с греч.- зерно).

2.Палочковидные.

3.Извитые.

Кокковидные бактерии (кокки) по характеру взаиморасположения после деления подразделяются на ряд вариантов.

1.Микрококки . Клетки расположены в одиночку. Входят в состав нормальной микрофлоры, находятся во внешней среде. Заболеваний у людей не вызывают.

2.Диплококки. Деление этих микроорганизмов происходит в одной плоскости, образуются пары клеток. Среди диплококков много патогенных микроорганизмов - гонококк, менингококк, пневмококк.

3.Стрептококки. Деление осуществляется в одной плоскости, размножающиеся клетки сохраняют связь (не расходятся), образуя цепочки. Много патогенных микроорганизмов - возбудители ангин , скарлатины, гнойных воспалительных процессов.

4.Тетракокки . Деление в двух взаимоперпендикулярных плоскостях с образованием тетрад (т. е. по четыре клетки). Медицинского значения не имеют.

5.Сарцины . Деление в трех взаимоперпендикулярных плоскостях, образуя тюки (пакеты) из 8, 16 и большего количества клеток. Часто обнаруживают в воздухе.

6.Стафилококки (от лат.- гроздь винограда). Делятся беспорядочно в различных плоскостях, образуя скопления, напоминающие грозди винограда. Вызывают многочисленные болезни, прежде всего гнойно-воспалительные.

Палочковидные формы микроорганизмов.

1.Бактерии - палочки, не образующие спор.

2.Бациллы - аэробные спорообразующие микробы. Диаметр споры обычно не превышает размера (“ширины”) клетки (эндоспоры).

3.Клостридии - анаэробные спорообразующие микробы. Диаметр споры больше поперечника (диаметра) вегетативной клетки, в связи с чем клетка напоминает веретено или теннисную ракетку.

Необходимо иметь в виду, что термин “бактерия” часто используют для обозначения всех микробов-прокариот. В более узком (морфологическом) значении бактерии - палочковидные формы прокариот, не имеющих спор.

Извитые формы микроорганизмов.

1.Спириллы - имеют 2- 3 завитка.

2.Спирохеты - имеют различное число завитков, аксостиль - совокупность фибрилл, специфический для различных представителей характер движения и особенности строения (особенно концевых участков). Из большого числа спирохет наибольшее медицинское значение имеют представители трех родов - Borrelia, Treponema, Leptospira.

Строение бактериальной клетки.

Обязательными органоидами являются : нуклеоид, цитоплазма, цитоплазматическая мембрана.

Необязательными (второстепенными) структурными элементами являются : включения, капсула, споры, пили, жгутики.

1.В центре бактериальной клетки находится нуклеоид - ядерное образование, представленное чаще всего одной хромосомой кольцевидной формы. Состоит из двухцепочечной нити ДНК. Нуклеоид не отделен от цитоплазмы ядерной мембраной.

Основные свойства вирусов , по которым они отличаются от остального живого мира.

1.Ультрамикроскопические размеры (измеряются в нанометрах). Крупные вирусы (вирус оспы) могут достигать размеров 300 нм, мелкие - от 20 до 40 нм. 1мм=1000мкм, 1мкм=1000нм.

3.Вирусы не способны к росту и бинарному делению.

4.Вирусы размножаются путем воспроизводства себя в инфицированной клетке хозяина за счет собственной геномной нуклеиновой кислоты.

6.Средой обитания вирусов являются живые клетки - бактерии (это вирусы бактерий или бактериофаги), клетки растений, животных и человека.

Все вирусы существуют в двух качественно разных формах: внеклеточной - вирион и внутриклеточной - вирус. Таксономия этих представителей микромира основана на характеристике вирионов - конечной фазы развития вирусов.

Строение (морфология) вирусов.

1.Геном вирусов образуют нуклеиновые кислоты, представленные одноцепочечными молекулами РНК (у большинства РНК-вирусов) или двухцепочечными молекулами ДНК (у большинства ДНК- вирусов).

2.Капсид - белковая оболочка, в которую упакована геномная нуклеиновая кислота. Капсид состоит из идентичных белковых субъединиц - капсомеров. Существуют два способа упаковки капсомеров в капсид - спиральный (спиральные вирусы) и кубический (сферические вирусы).

При спиральной симметрии белковые субъединицы располагаются по спирали, а между ними, также по спирали, уложена геномная нуклеиновая кислота (нитевидные вирусы). При кубическом типе симметрии вирионы могут быть в виде многогранников, чаще всего - двадцатигранники - икосаэдры.

3.Просто устроенные вирусы имеют только нуклеокапсид , т. е. комплекс генома с капсидом и называются “голыми”.

4. У других вирусов поверх капсида есть дополнительная мембраноподобная оболочка, приобретаемая вирусом в момент выхода из клетки хозяина - суперкапсид. Такие вирусы называют “одетыми”.

Кроме вирусов, имеются еще более просто устроенные формы способных передаваться агентов - плазмиды, вироиды и прионы.

Морфология риккетсий

Риккетсии не имеют спор, капсул, неподвижны. Грамотрицательны. По Романовскому-Гимзе и по способу Здродовского окрашиваются в красный цвет. Строение клеточной стенки сходно со строением стенки грамотрицательных бактерий.

Являются возбудителями сыпного тифа, болезни Брила.

Морфологическая характеристика грибов.

Грибы и простейшие имеют четко ограниченное ядро и относятся к эукариотам. Грибы крупнее бактерий, в эволюционном плане близки к растениям (наличие клеточной стенки, содержащей хитин или целлюлозу, вакуолей с клеточным соком, неспособность к перемещению, видимое движение цитоплазмы). Ядерный материал грибов отделен от цитоплазмы ядерной мембраной. Дрожжевые грибы образуют отдельные овальные клетки. Плесневые грибы формируют клеточные нитеподобные структуры - гифы . Мицелий - переплетение гиф - основная морфологическая структура. У низших грибов мицелий одноклеточный, не имеет внутренних перегородок (септ ). Грибы размножаются половым и бесполым (вегетативным) способом. При вегетативном размножении образуются специализированные репродуктивные структуры – споры - конидии . Они могут располагаться в специализированных вместилищах - спорангиях (эндоспоры) или отшнуровываться от плодоносящих гиф (экзоспоры).

Конидиоспоры - зрелые наружные споры, возникающие на дифференцированных конидиофорах (конидионосцах), отличающихся от других нитей мицелия по форме и размерам (у аспергилла, пеницилла) или располагающиеся по бокам и на концах любой ветви мицелия, прикрепляясь к ней непосредственно или тонкой ножкой.

К эндоспорам совершенных грибов относятся спорангиоспоры мукоровых грибов, развивающихся в специальных органах (спорангиях), располагающихся на вершине спорангиеносца. Споры освобождаются при разрыве стенки спорангия.

Основное функциональное отличие спор у бактерий и грибов: у бактерий споры обеспечивают переживание в неблагоприятных условиях окружающей среды, у грибов образование спор - способ размножения.

Морфологическая характеристика актиномицетов (лучистых грибов по старым классификациям). Актиномицеты - формы бактерий, имеющие истинный, не имеющий перегородок мицелий. Мицелиальный (в виде ветвящихся нитей) рост этих грамположительных бактерий придает им внешнее сходство с грибами. Это сходство усиливается вследствие наличия у высших форм актиномицетов наружных неполовых спор, которые называются конидиями.

В отличие от грибов, актиномицеты имеют прокариотическое строение клетки, не содержат в клеточной стенке хитина или целлюлозы, размножаются только бесполым путем. У низших актиномицетов мицелий фрагментируется на типичные одноклеточные бактерии.

Обычным местом обитания для большинства из них является почва. Однако ряд видов актиномицет могут инфицировать раны и вызывать образование абсцессов . С некоторыми актиномицетами (например, стрептомицетами) связана способность выработки антибиотиков.

Микроорганизмы (от лат. micros - малый) - организмы, невидимые невооруженным глазом. К ним относятся простейшие, спирохеты, грибы, бактерии, вирусы, изучением которых занимается микробиология. Величина микроорганизмов измеряется в микрометрах (мкм). В микромире существует большое разнообразие форм, которые делятся на группы с учетом общих принципов биологической классификации.

Первой общей биологической классификацией была созданная в XVIII веке система шведского ученого К. Линнея, основанная на морфологических признаках и включавшая животный и растительный мир. С развитием науки в классификации стали учитывать не только морфологические, но и физиологические, биохимические и генетические особенности микроорганизмов. В настоящее время невозможно говорить об единой классификации всех живых организмов: сохраняя единые принципы, классификации макро- и микроорганизмов имеют свои особенности.

Основными ступенями всех классификаций являются: царство - отдел - класс (группа) - порядок - семейство - род - вид. Главной классификационной категорией является вид - совокупность организмов, имеющих общее происхождение, сходные морфологические и физиологические признаки и обмен веществ.

Микроорганизмы относятся к царству прокариотов, представители которых, в отличие от эукариотов, не обладают оформленным ядром. Наследственная информация у прокариотов заключена в молекуле ДНК, располагающейся в цитоплазме клетки.

Для микроорганизмов принята в 1980 г. единая международная классификация, в основе которой лежит система, предложенная американским ученым Берги.

Для того чтобы определить, к какому виду относится микроорганизм, необходимо с помощью различных методов изучить его особенности (форму клетки, спорообразование, подвижность, ферментативные свойства) и по определителю найти его систематическое положение - идентифицировать.

Внутри вида существуют варианты: морфоварианты отличаются по морфологии, биоварианты - по биологическим свойствам, хемоварианты - по ферментативной активности, сероварианты - по антигенной структуре, фаговарианты - по чувствительности к фагам.

Для обозначения микроорганизмов принята общебиологическая бинарная или биноминальная (двойная) номенклатура, введенная К.Линнеем. Первое название обозначает род и пишется с прописной буквы. Второе название обозначает вид и пишется со строчной буквы. Например, Staphylococcus aureus - стафилококк золотистый. В названиях могут быть отражены имена исследователей, открывших микроорганизмы: бруцеллы - в честь Брюса, эшерихии - в честь Эшериха и т. д. В ряд наименований включены органы, которые поражает данный микроорганизм: пневмококки - легкие, менингококки - мозговую оболочку и т. д.

Бактерии

Бактерии - это одноклеточные организмы, лишенные хлорофилла. Средние размеры бактериальной клетки - 2-6 мкм. Размеры и форма клеток бактерий, присущие микроорганизмам определенного вида, могут изменяться под влиянием различных факторов (в зависимости от возраста бактериальной культуры, среды обитания и пр). Это явление называется полиморфизмом.

По форме клетки бактерии делятся на три группы: шаровидные, палочковидные и извитые (рис. 4).

Шаровидные бактерии называются кокки (от лат. coccus - ягода) и имеют диаметр клетки от 0,5 до 1 мкм. Форма кокков разнообразна: сферическая, ланцетовидная, бобовидная. По взаимному расположению клеток после деления среди кокков выделяют: микрококки (от лат. micros - малый) - клетки делятся в разных плоскостях и располагаются поодиночке; диплококки (от лат. diploos - двойной) - клетки делятся в одной плоскости и затем располагаются попарно; к ним относятся ланцетовидные пневмококки и бобовидные гонококки и менингококки; стрептококки (от лат. streptos - цепочка) - клетки делятся в одной плоскости и не расходятся, образуя цепочку; стафилококки (от лат. staphyle - гроздь) - клетки делятся в различных плоскостях, образуя скопления в виде грозди винограда; тетракокки (от лат. tetra - четыре) - клетки делятся в двух взаимно перпендикулярных плоскостях и располагаются по четыре; сарцины (от лат. sarcio - соединяю) - клетки делятся в трех взаимно перпендикулярных плоскостях и располагаются в виде тюков или пакетов по 8 или 16 клеток в каждом.

Кокки широко распространены во внешней среде, а также в организме человека и животных. Почти все группы кокков, исключая микрококки, тетракокки и сарцины, включают возбудителей инфекционных заболеваний.

Палочковидные формы называются бактериями. Средние размеры их от 1 до 6 мкм в длину и от 0,5 до 2 мкм в толщину.

Бактерии различаются по внешнему виду: концы их могут быть закругленными (кишечная палочка), обрубленными (возбудитель сибирской язвы), заостренными (возбудитель чумы) или утолщенными (возбудитель дифтерии). После деления бактерии могут располагаться попарно - диплобактерии (клебсиеллы), цепочкой (возбудитель сибирской язвы), иногда под углом друг к другу или крест-накрест (возбудитель дифтерии). Большинство бактерий располагается беспорядочно.

Среди бактерий встречаются изогнутые формы - вибрионы (возбудитель холеры).

К извитым формам относятся спириллы и спирохеты. Форма их клетки напоминает спираль. Большинство спирилл неболезнетворны.

Строение бактериальной клетки

Для изучения строения бактериальной клетки наряду со световым микроскопом применяют электронно-микроскопические и микрохимические исследования, позволяющие определить ультраструктуру бактериальной клетки.

Бактериальная клетка (рис. 5) состоит из следующих частей: трехслойной оболочки, цитоплазмы с различными включениями и ядерного вещества (нуклеоида). Дополнительными структурными образованиями являются капсулы, споры, жгутики, пили.

Оболочка клетки состоит из наружного слизистого слоя, клеточной стенки и цитоплазматической мембраны.

Слизистый капсульный слой находится снаружи клетки и выполняет защитную функцию.

Клеточная стенка - один из основных структурных элементов клетки, сохраняющий ее форму и отделяющий клетку от окружающей среды. Важным свойством клеточной стенки является избирательная проницаемость, которая обеспечивает проникновение в клетку необходимых питательных веществ (аминокислот, углеводов и др.) и выведение из клетки продуктов обмена. Клеточная стенка сохраняет внутри клетки постоянное осмотическое давление. Прочность стенки обеспечивает муреин, вещество полисахаридной природы. Некоторые вещества разрушают клеточную стенку, например лизоцим.

Бактерии, полностью лишенные клеточной стенки, называются протопластами. Они сохраняют способность к дыханию, делению, синтезу ферментов; к воздействию внешних факторов: механическому повреждению, осмотическому давлению, аэрации и др. Сохранить протопласты можно только в гипертонических растворах.

Бактерии с частично разрушенной клеточной стенкой называются сферопластами. Если подавить процесс синтеза клеточной стенки с помощью пенициллина, то образуются L-формы, которые у всех видов бактерий представляют шаровидные крупные и мелкие клетки с вакуолями.

Цитоплазматическая мембрана плотно прилегает к клеточной стенке с внутренней стороны. Она очень тонкая (8-10 нм) и состоит из белков и фосфолипидов. Это пограничный полупроницаемый слой, через который осуществляется питание клетки. В мембране находятся ферменты пермеазы, осуществляющие активный перенос веществ, и ферменты дыхания. Цитоплазматическая мембрана образует мезосомы, принимающие участие в делении клетки. При помещении клетки в гипертонический раствор мембрана может отделиться от клеточной стенки.

Цитоплазма - внутреннее содержимое бактериальной клетки. Она представляет собой коллоидную систему, состоящую из воды, белков, углеводов, липидов, различных минеральных солей. Химический состав и консистенция цитоплазмы изменяются в зависимости от возраста клетки и условий окружающей среды. В цитоплазме находятся ядерное вещество, рибосомы и различные включения.

Нуклеоид, ядерное вещество клетки, ее наследственный аппарат. Ядерное вещество прокариотов в отличие от эукариотов не имеет собственной мембраны. Нуклеоид зрелой клетки представляет собой двойную нить ДНК, свернутую в кольцо. В молекуле ДНК закодирована генетическая информация клетки. По генетической терминологии ядерное вещество получило название генофор или геном.

Рибосомы находятся в цитоплазме клетки и выполняют функцию синтеза белка. В состав рибосомы входит 60% РНК и 40% белка. Количество рибосом в клетке достигает 10000. Соединяясь вместе, рибосомы образуют полисомы.

Включения - гранулы, содержащие различные запасные питательные вещества: крахмал, гликоген, жир, волютин. Они расположены в цитоплазме.

Клетки бактерий в процессе жизнедеятельности образуют защитные органеллы - капсулы и споры.

Капсула - внешний уплотненный слизистый слой, примыкающий к клеточной стенке. Это защитный орган, который появляется у некоторых бактерий при попадании их в организм человека и животных. Капсула предохраняет микроорганизм от защитных факторов организма (возбудители пневмонии и сибирской язвы). Некоторые микроорганизмы имеют постоянную капсулу (клебсиеллы).

Споры встречаются только у палочковидных бактерий. Они образуются при попадании микроорганизма в неблагоприятные условия внешней среды (действие высоких температур, высыхание, изменение рН, уменьшение количества питательных веществ в среде и т. д.). Споры находятся внутри бактериальной клетки и представляют уплотненный участок цитоплазмы с нуклеоидом, одетый собственной плотной оболочкой. По химическому составу они отличаются от вегетативных клеток малым количеством воды, увеличенным содержанием липидов и солей кальция, что способствует высокой устойчивости спор. Спорообразование происходит в течение 18-20 ч; при попадании микроорганизма в благоприятные условия спора в течение 4-5 ч прорастает в вегетативную форму. В бактериальной клетке образуется только одна спора, следовательно, споры не являются органами размножения, а служат для переживания неблагоприятных условий.

Спорообразующие аэробные бактерии называются бациллами, а анаэробные - клостридиями.

Споры отличаются по форме, размерам и расположению в клетке. Они могут располагаться центрально, субтерминально и терминально (рис. 6). У возбудителя сибирской язвы спора располагается центрально, ее размер не превышает поперечника клетки. Спора возбудителя ботулизма расположена ближе к концу клетки - субтерминально и превышает ширину клетки. У возбудителя столбняка округлая спора располагается на конце клетки - терминально и значительно превышает ширину клетки.

Жгутики - органы движения, характерны для палочковидных бактерий. Это тонкие нитевидные фибриллы, состоящие из белка - флагеллина. Длина их значительно превышает длину бактериальной клетки. Жгутики отходят от базального тельца, расположенного в цитоплазме, и выходят на поверхность клетки. Наличие их можно обнаружить по определению подвижности клеток под микроскопом, в полужидкой питательной среде или при окраске специальными методами. Ультраструктура жгутиков изучена в электронном микроскопе. По расположению жгутиков бактерии делят на группы (см. рис. 6): монотрихи - с одним жгутиком (возбудитель холеры); амфитрихи - с пучками или единичными жгутиками на обоих концах клетки (спириллы); лофотрихи - с пучком жгутиков на одном конце клетки (фекальный щелочеобразователь); перитрихи - жгутики расположены по всей поверхности клетки (кишечные бактерии). Скорость движения бактерий зависит от количества и расположения жгутиков (наиболее активны монотрихи), от возраста бактерий и влияния окружающих факторов.

Пили или фимбрии - ворсинки, расположенные на поверхности бактериальных клеток. Они короче и тоньше жгутиков и также имеют спиральную структуру. Состоят пили из белка - пилина. Одни пили (их несколько сотен) служат для прикрепления бактерий к клеткам животных и человека, с другими (единичными) связана передача генетического материала из клетки в клетку.

Микоплазмы

Микоплазмы - клетки, не имеющие клеточной стенки, но окруженные трехслойной липопротеидной цитоплазматической мембраной. Микоплазмы могут быть сферической, овальной формы, в виде нитей и звезд. Микоплазмы по классификации Берги выделены в отдельную группу. В настоящее время этим микроорганизмам уделяется все большее внимание как возбудителям заболеваний воспалительного характера. Размеры их различны: от нескольких микрометров до 125-150 нм. Мелкие микоплазмы проходят через бактериальные фильтры и называются фильтрующимися формами.

Спирохеты

Спирохеты (см. рис. 52) (от лат. speira - изгиб, chaite - волосы) - тонкие, извитые, подвижные одноклеточные организмы, имеющие размеры от 5 до 500 мкм в длину и 0,3-0,75 мкм в ширину. С простейшими их роднит способ движения путем сокращения внутренней осевой нити, состоящей из пучка фибрилл. Характер движения спирохет различен: поступательное, вращательное, сгибательное, волнообразное. В остальном строение клетки типичное для бактерий. Некоторые спирохеты слабо окрашиваются анилиновыми красителями. Спирохеты разделяют на роды по количеству и форме завитков нити и ее окончанию. Кроме сапрофитных форм, распространенных в природе и организме человека, среди спирохет имеются болезнетворные - возбудители сифилиса и других заболеваний.

Риккетсии

Вирусы

Среди вирусов выделяют группу фагов (от лат. phagos - пожирающий), вызывающих лизис (разрушение) клеток микроорганизмов. Сохраняя присущие вирусам свойства и состав, фаги отличаются структурой вириона (см. главу 8). Они не вызывают заболеваний человека и животных.

Контрольные вопросы

1. Расскажите о классификации микроорганизмов.

2. Назовите основные свойства представителей царства прокариотов.

3. Перечислите и охарактеризуйте основные формы бактерий.

4. Назовите основные органеллы клетки и их назначение.

5. Дайте краткую характеристику основных групп бактерий и вирусов.

Изучение морфологии микроорганизмов

Для изучения морфологии микроорганизмов применяют микроскопический метод исследования. Важным условием успешного использования этого метода является правильное приготовление мазка из исследуемого материала или бактериальной культуры. Культурой называются микроорганизмы, выращенные на питательных средах в лабораторных условиях.

Техника приготовления мазка

Для работы необходимо иметь чистые и обезжиренные предметные и покровные стекла. Новые стекла кипятят 15-20 мин в 2-5% растворе соды или мыльной воде, споласкивают водой и помещают в слабую хлороводородную кислоту, затем тщательно промывают водой.

Стекла, бывшие в употреблении и загрязненные красителями или иммерсионным маслом, можно обработать двумя способами: 1) погрузить на 2 ч в концентрированную серную кислоту или хромовую смесь, а затем тщательно промыть; 2) кипятить 30-40 мин в 5% растворе соды или щелочи. Необработанные стекла можно обезжирить, натерев их мылом, а затем очистить от него сухой тканью.

Внимание! Если стекло хорошо обезжирено, то капля воды растекается на нем равномерно, не распадаясь на мелкие капли.

Хранят стекла в сосудах с притертыми пробками в смеси Никифорова (равные объемы спирта и эфира) или в 96% спирте. Из растворов стекла извлекают пинцетом.

Внимание! При работе стекла держат пальцами за грани.

Материал для исследования наносят на предметное стекло бактериальной петлей, иглой или пастеровской пипеткой. Чаще всего применяют бактериальную петлю (рис. 7), сделанную из платиновой или нихромовой нити длиной 5-6 см. Петлю закрепляют в петледержателе или впаивают в стеклянную палочку. Конец проволоки сгибают в виде кольца размером 1×1,5 или 2×3 мкм.

Внимание! Правильно приготовленная петля при погружении в воду и извлечении оттуда сохраняет водную пленку.

Перед приготовлением мазка рабочую часть петли прожигают в пламени горелки в вертикальном положении: сначала саму петлю, а затем металлический стержень. Эту манипуляцию проводят и после окончания посева.

Приготовление мазка из культуры, выращенной на жидкой питательной среде . Обезжиренное предметное стекло прожигают в пламени горелки и охлаждают. На предметное стекло, помещенное на подставку (чашку Петри, штатив), наносят культуру. Пробирку с культурой держат большим и указательным пальцами левой руки. Петлю держат в правой руке. Не выпуская петли, мизинцем правой руки прижимают пробку к ладони и осторожно вынимают ее из пробирки. Движения должны быть плавными и спокойными. Горло пробирки обжигают в пламени горелки. Вводят петлю в пробирку. Охлаждают петлю о стенку пробирки и затем погружают ее в культуру. Вынимают петлю, не касаясь ею стенок пробирки. Закрывают пробку, предварительно проведя ее через пламя горелки. Ставят пробирку в штатив. Петлей наносят культуру на предметное стекло, круговыми движениями равномерно распределяя ее. Затем петлю прожигают в пламени горелки. Мазок оставляют для высыхания.

Внимание! Мазок должен быть равномерно растертым, тонким и небольшим (с двухкопеечную монету).

Приготовление мазка из культуры, выращенной на плотной питательной среде . На подготовленное предметное стекло наносят пастеровской пипеткой или петлей каплю изотонического раствора натрия хлорида (0,9%). Культуру осторожно снимают петлей с агара в пробирке или чашке Петри и эмульгируют в капле на стекле. Приготовленный мазок должен быть равномерным и не густым. При его высыхании на предметном стекле остается слабый налет.

Приготовление мазка из гноя или мокроты . Материал забирают стерильной пипеткой или петлей и наносят на середину предметного стекла. Вторым предметным стеклом покрывают первое так, чтобы свободными остались треть первого и второго стекол. Стекла с усилием раздвигают в стороны. Получают два больших мазка.

Приготовление мазка из крови . Каплю крови наносят на предметное стекло на расстоянии одной трети от левого края. Затем краем специально отшлифованного стекла, наклонив его под углом 45°, прикасаются к капле крови. Прижимая отшлифованное стекло к предметному продвигают его вперед. Правильно приготовленный мазок имеет желтоватый цвет и просвечивает.

Приготовление мазков-отпечатков из внутренних органов трупов и пищевых продуктов твердой консистенции . Поверхность органа или пищевого продукта прижигают раскаленным скальпелем и из этого участка вырезают кусочек материала. Пинцетом осторожно захватывают этот кусочек и поверхностью среза прикасаются к предметному стеклу в двух - трех местах, делая ряд мазков-отпечатков.

Высушивание мазка

Мазок высушивают на воздухе при комнатной температуре. В случае необходимости его можно высушить около пламени горелки, держа стекло в горизонтальном положении за края большим и указательным пальцами мазком вверх.

Внимание! При высокой температуре может произойти нарушение структуры клеток.

Фиксация мазка

Мазки фиксируют после полного высыхания с целью: 1) закрепить микроорганизмы на стекле; 2) обезвредить материал; 3) убитые микроорганизмы лучше воспринимают окраску. Фиксированный мазок называется препаратом.

Способы фиксации. 1. Физический - в пламени горелки: стекло берут пинцетом или большим и указательным пальцами и троекратно проводят через верхнюю часть пламени горелки в течение 6 с.

2. Химический - в жидкости: клеточные элементы в мазках из крови и мазках-отпечатках при действии высоких температур разрушаются, поэтому их обрабатывают одной из фиксирующих жидкостей: а) метиловым спиртом- 5 мин; б) этиловым спиртом - 10 мин; в) смесью Никифорова - 10-15 мин; г) ацетоном - 5 мин; д) парами кислоты и формалина - несколько секунд.

Окраска препаратов

После фиксации приступают к окраске препарата.

Окраску препаратов производят на специально оборудованном столе, покрытом линолеумом, пластиком, стеклом и т. д. На столе необходимы сосуд с дистиллированной водой; подставка из двух трубочек или палочек, соединенных резиновыми трубками с обеих сторон (для размещения препаратов); пинцеты, цилиндры, пипетки, фильтровальная бумага, набор красителей, емкость для их слива. Стол для окраски должен находиться рядом с водопроводным краном.

Отношение микроорганизмов к красителям называется их тинкториальными свойствами. В микробиологии широко используют анилиновые красители. Большинство микроорганизмов лучше воспринимает основные красители.

Наиболее употребительны следующие красители: красные (фуксин основной, фуксин кислый, конго красный, нейтральный красный); синие (метиленовый и толуидиновый); фиолетовые (генциановый, метиловый, кристаллический); коричнево-желтые (везувин, хризоидин); зеленые (бриллиантовый, малахитовый).

Все красители выпускают в виде аморфных или кристаллических порошков. Из них готовят насыщенные спиртовые и феноловые растворы, а затем для работы используют водно-спиртовые или водно-феноловые растворы красителей. Если при окраске используют концентрированные растворы красителей, то препарат предварительно накрывают фильтровальной бумагой, на которую наносят краситель. При этом кусочки красителя остаются на бумаге.

Внимание! Каплю красителя наносят пипеткой так, чтобы он покрыл весь препарат.

Рецепты красителей

1. Насыщенные спиртовые растворы (исходные):

Красителя - 1 г спирта 96% - 10 мл

Смесь помещают в термостат до полного растворения на несколько дней. Взбалтывают ежедневно. Хранят в склянках с притертыми пробками.

2. Карболовый фуксин Циля (для окраски кислотоустойчивых микроорганизмов, спор и капсул):

Насыщенного спиртового раствора основного фуксина - 10 мл раствора карболовой кислоты 5% - 90 мл

Внимание! Карболовую кислоту вливают в краситель, а не наоборот.

Смесь в течение нескольких минут энергично встряхивают, фильтруют и сливают во флакон для хранения.

3. Фуксин Пфейффера (для окраски по Граму и для простого метода окраски):

Фуксина Циля - 1 мл воды дистиллированной - 9 мл

Краситель готовят непосредственно перед применением.

4. Карболовый генциановый фиолетовый (для окраски по Граму):

насыщенного спиртового раствора

генцианового фиолетового - 10 мл

карболовой кислоты 5% - 100 мл

Растворы смешивают и фильтруют через бумажный фильтр.

5. Раствор Люголя (для окраски по Граму и реактив на крахмал):

Йодида калия - 2 г кристаллического йода - 1 г дистиллированной воды - 10 мл

Смесь помещают в бутыль матового стекла, хорошо закупоривают и ставят на сутки в термостат, затем добавляют 300 мл дистиллированной воды.

6. Щелочной раствор метиленового синего Леффлера:

Насыщенного спиртового раствора метиленового синего - 30 мл раствора гидроксида калия 1% - 1 мл дистиллированной воды - 100 мл

7. Бумажки по Синеву (для окраски по Граму):

1% спиртовой раствор кристаллического фиолетового

Полоски фильтровальной бумаги пропитывают раствором и высушивают.

Методы окраски делят на ориентировочные (простые) и дифференциальные (сложные), выявляющие химические и структурные особенности бактериальной клетки.

Простой метод окраски

Препарат помещают на подставку для окраски, исследуемым материалом вверх. Пипеткой наносят на него раствор красителя. По истечении указанного времени краситель осторожно сливают, препарат промывают водой и высушивают фильтровальной бумагой. При простом методе используют один краситель. Метиленовым синим и щелочным синим Леффлера окрашивают препарат в течение 3-5 мин, фуксином Пфейффера - 1-2 мин (см. рис. 4).

На окрашенный и высушенный препарат наносят каплю иммерсионного масла и

Сложные методы окраски

Окраска по Граму (универсальный метод) . Наиболее распространенным методом дифференциальной окраски является окраска по Граму.

В зависимости от результатов окраски все микроорганизмы делят на две группы - грамположительные и грамотрицательные.

Грамположительные бактерии содержат в клеточной стенке магниевую соль РНК, которая образует комплексное соединение с йодом и основным красителем (генциановым, метиловым или кристаллическим фиолетовым). Этот комплекс не разрушается при действии спирта, и бактерии сохраняют фиолетовый цвет.

Грамотрицательные бактерии не способны удержать основной краситель, так как не содержат магниевой соли РНК. Под действием спирта краситель вымывается, клетки обесцвечиваются и окрашиваются дополнительным красителем (фуксином) в красный цвет.

1. На препарат накладывают бумажку по Синеву и наносят несколько капель воды или раствор генцианового фиолетового. Окрашивают 1-2 мин. Снимают бумагу или сливают краситель.

2. Не промывая водой, наносят раствор Люголя до почернения (1 мин), затем краситель сливают.

3. Не промывая водой, наносят 96% спирт до отхождения красителя (30-60 с). Можно опустить препарат в стаканчик со спиртом на 1-2 с.

4. Промывают препарат водой.

5. Докрашивают фуксином Пфейффера 3 мин, промывают водой и высушивают.

Микроскопируют с помощью иммерсионной системы.

Окраска по Цилю - Нильсену (для кислотоустойчивых бактерий) . Этот метод применяют для выявления бактерий туберкулеза и проказы, имеющих в оболочке клеток большое количество липидов, воска и оксикислот. Бактерии кислото-, щелоче- и спиртоустойчивы. Для увеличения проницаемости клеточной стенки первый этап окрашивания проводят при подогревании.

1. Фиксированный препарат покрывают фильтровальной бумагой и наносят фуксин Циля. Удерживая стекло пинцетом, препарат подогревают над пламенем горелки до отхождения паров. Добавляют новую порцию красителя и подогревают еще 2 раза. После охлаждения снимают бумагу и промывают препарат водой.

2. Препарат обесцвечивают 5% раствором серной кислоты, погружая 2-3 раза в раствор или наливая кислоту на стекло, затем несколько раз промывают водой.

3. Окрашивают водно-спиртовым раствором метиленового синего в течение 3-5 мин, промывают водой и высушивают.

Микроскопируют с помощью иммерсионной системы.

Кислотоустойчивые бактерии окрашиваются в красный цвет, остальные - в синий (см. рис. 4).

Окраска по Ожешко (выявление спор) . 1. На высушенный на воздухе мазок наливают несколько капель 0,5% раствора хлороводородной кислоты и подогревают до образования паров. Препарат высушивают и фиксируют над пламенем.

2. Окрашивают по способу Циля - Нильсена. Кислотоустойчивые споры окрашиваются в розово-красный, а бактериальная клетка - в голубой цвет (см. рис. 4).

Окраска по Бурри - Гинсу (выявление капсулы) . Этот метод назван негативным, так как окрашивается фон препарата и бактериальная клетка, а капсула остается неокрашенной.

1. На предметное стекло наносят каплю черной туши, разведенной в 10 раз. В нее вносят каплю культуры. Ребром шлифовального стекла делают мазок, так же как мазок крови, и высушивают.

2. Фиксируют химическим способом спиртом или сулемой. Осторожно промывают водой.

3. Окрашивают фуксином Пфейффера 3-5 мин. Осторожно промывают и высушивают на воздухе.

Внимание! Фильтровальной бумагой не пользоваться, чтобы не повредить препарат.

Микроскопируют с помощью иммерсионной системы. Фон препарата черный, клетки - красные, капсулы - неокрашенные (см. рис. 4).

Прижизненная окраска микроорганизмов

Для изучения живой культуры используют чаще всего метиленовый синий и другие красители в больших разведениях (1:10000). Каплю исследуемого материала смешивают на предметном стекле с каплей красителя и накрывают покровным стеклом. Микроскопируют с помощью объектива 40×.

Изучение подвижности микроорганизмов

Для исследования используют культуру бактерий, выращенных в жидкой питательной среде, или взвесь бактерий в изотоническом растворе натрия хлорида.

Метод раздавленной капли . На предметное стекло наносят пипеткой каплю культуры и покрывают ее покровным стеклом. Чтобы не образовывалось пузырьков воздуха, покровное стекло подводят ребром к краю капли и резко опускают его. Для предохранения препарата от высыхания его помещают во влажную камеру.

Влажная камера представляет собой чашку Петри, на дне которой находится влажная фильтровальная бумага. На бумагу кладут две спички и на них помещают препарат. Чашку закрывают крышкой.

Микроскопируют при увеличении объектива 40х в темном поле (см. главу 2).

Метод висячей капли (рис. 8). Для приготовления препарата необходимы стекло с лункой, покровное стекло и вазелин. Края лунки покрывают тонким слоем вазелина.

На покровное стекло наносят каплю культуры. Затем осторожно накрывают покровное стекло стеклом с лункой так, чтобы капля оказалась в центре. Склеившиеся стекла быстро переворачивают покровным стеклом вверх. Капля находится в герметической камере и сохраняется долгое время. При микроскопии сначала при малом увеличении (8×) находят край капли, а затем проводят изучение препарата при большом увеличении.

Контрольные вопросы

1. Как приготовить бактериальную петлю?

2. Назовите цели и способы фиксации мазков.

3. Назовите основные красители.

4. Какими методами изучают подвижность микроорганизмов?

Задание

1. Возьмите готовые препараты, изучите их и зарисуйте основные формы микроорганизмов.

2. Приготовьте мазки из различного материала (культуры, гноя, крови, мазки-отпечатки).

3. Окрасьте препараты сложными методами (по Граму, Цилю - Нильсену, Ожешко, Бурри - Гинсу).

Глава 1. МОРФОЛОГИЯ И КЛАССИФИКАЦИЯ МИКРООРГАНИЗМОВ

Морфология микроорганизмов изучает форму и особен­ности строения клеток, способность двигаться, образовывать споры, способы размножения и др. По современным.представ­лениям все живые организмы, имеющие клеточное строение, делятся на два надцарства: прокариоты и эукариоты (греч. «ка-рион» -ядро). Организмы, не имеющие клеточного строения, составляют третье надцарство - акариоты (например, вирусы). К прокариотам относится только одно царство - бактерии, в том числе цианобактерии (сине-зеленые водоросли). К эука-риотам относятся три царства: животные, растения и грибы.

Рис. 1. Формы бактерий:

а - шаровидные; б - палочковидные; в - извитые; 4- нитчатые; д - новые формы- 1 - микрококки; 2 -стрептококки; 3 -диплококки и тетракокки;.. 4 - стафилококки; 5 -сар­дины; б -палочки без спор; 7 - палочки со спорами; 8"-вибрионы; 9 - спириллы; 10 - спирохеты; //- тороиды; 12 - бактерии, образующие простеки; 13 - червеобразные"; 14 - шестиугольные

Деление живых организмов на прокариоты и эукариоты ба­зируется прежде всего на особенностях строения их ядерного аппарата. С помощью электронного микроскопа было установ­лено отсутствие у бактерий истинного ядра, поэтому их назва­ли прокариотами, то есть «доядерными» организмами. Извест­но, что основой ядерного аппарата является дезоксирибонук-леиновая кислота (ДНК), молекула которой имеет вид двойной спирально закрученной нити. Ядерный аппарат прокариот включает молекулу ДНК в виде замкнутой в кольцо нити, рас­положенную непосредственно в цитоплазме. Ядерный аппарат прокариот называют нуклеоидом, что в переводе с латинского означает «подобный ядру». У эукариот имеется истинное ядро с ядрышком, окруженное ядерной мембраной. Внутри ядра заключена ДНК. Наряду с этим основным признаком имеется много специфических особенностей в строении и обмене ве­ществ прокариот.

Основными объектами технической микробиологии являют­ся бактерии, мицелиальные грибы,и дрожжи, которые в основ­ном составляют как полезную, так и нежелательную микро­флору пищевых производств.

ПРОКАРИОТЫ (БАКТЕРИИ]

В мире микроорганизмов бактерии по численности (около 4000 видов) и разнообразию осуществляемых ими химических превращений занимают ведущее место. Большинство бактерий -это одноклеточные организмы, но имеются и многокле­точные.

Форма и размеры бактерий. Одноклеточные бактерии по внешнему виду разделяются на три основные группы: шаро­видные, палочковидные и извитые (рис. 1).

Шаровидные бактерии -кокки (рис. \,а) могут быть одиночными - микрококки либо соединенными попарно - диплококки. Часто при делении клетки по тем или иным причи­нам не расходятся и образуют различные сочетания, которые за­висят от расположения делящей перегородки. Когда делящие пе­регородки располагаются в двух взаимно перпендикулярных плоскостях, то образуются группы, состоящие из четырех кле­ток - тетракокки. При делении в трех взаимно перпендикуляр­ных плоскостях образуются пакетообразные скопления, состоя­щие из восьми - шестнадцати кокков, называемые сарцинами. При делении кокков в разных направлениях образуются скоп­ления клеток, напоминающие грозди винограда, - стафилокок­ки. Если деление кокков происходит в одном направлении и они при этом не разделяются, то образуются цепочки кле­ток- стрептококки. Эти сочетания не эквивалентны многоклеточным микроорганизмам, так как каждая клетка в них явля­ется отдельным организмом, способным на самостоятельное существование после отделения от остальных клеток.


Рис. 2. Актиномицеты:

а - мицелий; б - спороносны

Палочковидные бактерии (рис. 1, б) имеют фор­му вытянутого цилиндра, могут быть одиночными или соеди­ненными попарно, а также в виде цепочек из трех и более кле­ток. Отношение длины клетки к ее поперечнику у них сильно варьирует. У коротких палочек длина лишь ненамного превы­шает поперечное сечение и их иногда довольно трудно отли­чить от кокков. Палочковидные бактерии являются наиболее многочисленной группой среди бактерий.

Извитые (рис. 1, в) бактерии бывают трех типов: виб­рионы - палочки, изогнутые в виде запятой; спириллы, имею­щие несколько правильных завитков, и спирохеты, имеющие вид мелких спиралей с многочисленными завитками.

Кроме этих наиболее распространенных в природе форм бактерий имеется небольшое число нитчатых форм (рис. 1, г). Они представляют собой многоклеточные организ­мы в виде,нитей, состоящих из одинаковых цилиндрических или дисковидных клеток.

Сравнительно недавно в почве и водоемах были обнаруже­ны новые формы бактерий, клетки которых имеют вид разомкнутого или замкнутого кольца (тороиды), шести­угольной звезды, розетки, а также клетки с выростами (просте-ками) и червеобразной формы (рис. 1, д).

Рис. 3. Схема строения бактериальной клетки: 1 - капсула; 2 - клеточная стенка; 3 - цитоплазмати-ческая мембрана; 4 - цитоплазма; 5 - мезосомы; 6 - рибосомы; 7 - полисахаридные гранулы; 8 - нуклео-ид; 9 - включения серы; 10 - жировые капли; 11 - полифосфатные гранулы; 12 - внутриплазматические мембранные образования; 13 - базальное тельце; 14 - жгутики

К бактериям относится еще одна, особая группа микроорганизмов - ак­тиномицеты. Их клетки в основ­ном имеют вид очень тонких длинных прямых ветвящихся нитей (рис. 2).

Размеры бактерий ничтожно малы, поперечное сечение клеток большин­ства бактерий не превышает 0,5-0,8 мкм, средняя длина палочковидных бактерий от 0,5 до 3 мкм. Нитчатые бактерии значительно крупнее - не-

которые имеют 15--125 мкм в длину и 5-35 мкм в поперечни­ке. Длина клеток спирохет может достигать 500 мкм. Наибо­лее мелкие из микроорганизмов - микоплазмы, не имеющие клеточной стенки, имеют размер 0,1-0,15 мкм.

Объем бактериальной клетки в среднем составляет 0,07 мкм 3 , масса - 5-10~ 12 г. В 1 мм 3 может содержаться до 10 9 бактери­альных клеток.

В пищевых производствах основное значение имеют шаро­видные и палочковидные бактерии.

Строение, химический состав и функции клеточных струк­тур бактериальной (прокариотной) клетки. Обязательными клеточными структурами у преобладающего большинства бак­терий являются: клеточная стенка, цитоплазматическая мемб­рана (ЦП*М), ядерный аппарат (нуклеоид) и рибосомы (рис.3).

Клетка снаружи покрыта жесткой клеточной стенкой. Она придает форму клетке, предохраняет ее от неблагоприятных внешних тепловых и механических воздействий, защищает клетку от проникновения в нее избытка воды. У некоторых бактерий на наружной.поверхности клеточной стенки образу­ются капсулы или слизистый слой. Капсула чаще всего состо­ит из полисахаридов (декстрана, левана), реже -из полипеп-тидов. Капсула - необязательная структура бактериальной клетки. Иногда капсулы служат источником запасных пита-тательных веществ. Например, капсулы из полисахаридов об­разуются у клеток лейконостока на средах с значительным количеством углеводов.

По химическому составу и строению клеточной стенки бак­терии делятся на 2 большие группы: грамположительные и грамотрицательные бактерии (Трам+ и Грам -).

гис. *. ч.лема строения клеточных стенок грамположительных и грамотрицательных бактерий


Названы так по имени датского ученого Кристиана Грама, предложив­шего специальный способ ок­раски бактерий (окраска по Граму). После окраски препа­рат бактерий обрабатывают спиртом или ацетоном, в ре­зультате чего Грам - бакте­рии обесцвечиваются, а Грам + бактерии сохраняют темно-фиолетовую окраску. Окраска по Граму имеет важное значе­ние для классификации бакте­рий.

Как у Грам + , так и у Грам - бактерий жесткость

- клетОЧНОЙ СТеНКИ Обусловлена наличием полимерного соеди-

нения пептидогликана (муреи-на), но у Грам+ бактерий его количество значительно больше (до 90-95% от веществ кле­точной стенки), а у Грам - - 5-10%. Пептидогликановый слой у Грам+ бактерий плотно прилегает к ЦПМ (рис. 4).

Кроме того, в клеточных стенках Грам+ бактерий имеются другие полимеры - тейхоевые кислоты, которые так же, как и пептидогликан, имеются только у прокариот, а у эукариот не обнаруживаются. В составе клеточной стенки Грам+ бакте­рий в небольших количествах содержатся полисахариды. У Грам+ бактерий клеточная стенка имеет толщину 20-80 нм, юна однослойная и плотная.

Клеточная стенка Грам - бактерий значительно тоньше - 10-13 нм, но она многослойная. Пептидогликан образует только внутренний слой, неплотно прилегающий к ЦПМ. К внутреннему слою прилегает наружная мембрана, состоящая из липопротеидов и липополисахаридов. Тейхоевые кислоты в клеточной стенке Грам - бактерий отсутствуют.

Наружная мембрана Грам - бактерий препятствует проник­новению в клетку токсических веществ, поэтому Грам - бакте­рии значительно устойчивее по сравнению с Грам+ бактериями к действию антибиотиков, ядовитых химических и др. веществ. Поэтому в пищевых производствах борьба с Грам - бактериями с помощью дезинфицирующих средств не всегда эффективна.

Цитоплазматическая мембрана (ЦПМ) расположена под клеточной стенкой, ограничивает содержимое клетки и играет очень важную роль в жизни клетки. Нарушение ее целостности приводит к гибели клетки. Химически ЦПМ представляет со­бой белково-липидный комплекс, состоящий из белков (50- 75% от массы ЦПМ), липидов (в основном фосфолипиды - 15-45%) и небольшого количества углеводов. В ЦПМ имеются поры, через которые в клетку поступают питательные ве­щества и выводятся конечные продукты обмена веществ.

Поскольку у прокариот ЦПМ единственная, в отличие от эукариот, мембранная структура в клетке, то она выполняет много функций: осуществляет транспорт питательных веществ из внешней среды внутрь * клетки с помощью специфических белков - переносчиков; на внутренней стороне ЦПМ располо­жены окислительно-восстановительные ферменты, участвую­щие в снабжении клетки энергией, и гидролитические фермен­ты, рсуществляющие расщепление высокомолекулярных соеди­нений. У некоторых бактерий ЦПМ образует впячивания внутрь клетки - мезосомы, имеющие различные формы и раз­меры и выполняющие различные функции (участие в энерге­тических процессах, в процессах деления клетки, процессе раз­множения и др.).

Цитоплазма - это внутреннее содержимое клетки, окружен­ное ЦПМ, представляющая собой полужидкую коллоидную систему. Она содержит воду до 70-80% от массы клетки, фер­менты, аминокислоты, набор РНК, субстраты и продукты об­мена веществ клетки. В цитоплазме располагаются остальные жизненно важные структуры клетки - нуклеоид, рибосомы, а также запасные вещества различной природы.

Нуклеоид представляет собой ядерный аппарат прокариот. Это компактное образование, занимающее центральную область в цитоплазме, состоящее из двойной спирально закрученной нити ДНК, замкнутой в кольцо, которая еще называется бак­териальной хромосомой. Бактериальная хромосома в одной точке соприкасается с мезосомой. В развернутом виде нить ДНК может иметь длину более 1 мм, т. е. почти в 1000 раз больше длины бактериальной клетки. Вся генетическая инфор­мация у прокариот, так же как и у эукариот, заключена -в ДНК, поэтому функция нуклеоида состоит в передаче наслед­ственных свойств. Перед, делением клетки нуклеоид делится пополам. Ядерный аппарат прокариот не имеет ядрышка и не отделен от цитоплазмы ядерной мембраной, как это имеет место у эукариот.

Рибосомы - небольшие гранулы, рассеянные в цитоплазме, состоящие из РНК (60%) и белка (40%). Они играют очень важную физиологическую роль, поскольку на них происходит синтез белков. В молодых клетках наблюдается повышенное содержание рибосом.

В клетках бактерий, помимо обязательных клеточных структур, имеются включения запасных веществ. Они накапли­ваются при избытке тех или иных питательных веществ в сре­де, а расходуются при голодании клетки. К запасным вещест­вам клетки бактерий относятся полисахариды, включающие гликоген, крахмал и гранулезу; жировые капли, содержа­щие липиды (жиры) в виде поли-р-оксимасляной кислоты, которая синтезируется на средах богатых углеводами. Поли-р-оксимасляная кислота встречает­ся только у прокариот и ее количест­во может достигать 50% от сухой массы клеток. Гранулеза и липиды служат хорошим источником углеро­да и энергии для клетки. У многих прокариот в клетках накапливаются полифосфаты в виде гранул, называе­мых также валютиновыми или мета-хроматиновыми зернами. Они исполь­зуются клетками как источник фос­фора.


Рис. 5. Схема прикрепления

1 - клеточная стенка; 2 - цито-

плазматическая мембрана; 3 -

мембрана жгутиков; 4 -диски

основания; 5 - жгутики

В клетках некоторых бактерий, участвующих в превращениях серы, откладывается молекулярная сера в виде особых включений.

Подвижность бактерий. Способно-

стью к движению обладает примерно Уб часть бактерий. Это в основном многие палочковидные и все извитые формы бакте­рий. Неподвижными являются почти все шаровидные бактерии (кокки), более 50% палочковидных бактерий и ряд других.

Чаще всего движение осуществляется с помощью жгутиков (см. рис. 3) -тонких нитей толщиной 10-20 нм, состоящих из особого белка флагеллина. Длина жгутиков во много раз мо­жет превышать длину клетки. Жгутики (рис. 5.) прикрепляют­ся к мембране с помощью двух пар дисков основания и через поры в ней и клеточной стенке выходят наружу. Скорость пе­ремещения бактерий с помощью жгутиков высока (20- 60 мкм/с).

Характер расположения жгутиков на поверхности клетки является одним из признаков классификации бактерий (рис. 6). Их количество может быть от 1 до 100. Бактерии, имеющие один жгутик на конце клетки, называют монотрихами; с пуч­ком жгутиков на одном или обоих концах клетки - лофотри* хами; один жгутик на обоих донцах - амфитрихами. Бакте­рии, у которых жгутики покрывают всю поверхность клетки, называются перитрихами. Жгутики обеспечивают активное движение клеток только в жидкой среде, и при утрате жгути­ков при старении или механическом воздействии клетки теря­ют способность к движению, но сохраняют жизнеспособность.

К подвижным формам относятся также спирохеты, некото­рые нитчатые (многоклеточные) и другие бактерии, не имею­щие. жгутиков. Спирохеты могут передвигаться и в жидкой среде, и по твердому субстрату в результате волнообразных сокращений клетки. Нитчатые бактерии, цианобактерии и дру­гие обладают скользящим типом движения по твердому и полу­твердому субстрату.

Способность к движению позволяет бактериям переместить­ся в ту область среды, в которой условия для их роста и размножения (концентрация питательных веществ и кислорода в среде, освещенность и др.) наиболее оптимальны.

Рис. 6. Расположение жгутиков у подвижных форм бактерий: а - монотрих; б - амфитрих; в - лофотрих; г - перитрих

Рост и размножение бактерий. Основной отличительной осо­бенностью живых организмов от неживой природы является, рост и размножение. Рост - это физиологический процесс, в ходе которого увеличиваются размеры и масса клетки. Рост бактериальной клетки ограничен, и, достигнув определенной величины, она перестает расти. Начинается процесс размноже­ния, т. е. увеличение числа особей (клеток), когда от материн­ской клетки отделяется дочерняя.

Большинство бактерий размножается простым делением на две части. Такой способ размножения называется бинарным поперечным делением. У подавляющего большинства Грам+ бактерий клетки делятся ровно пополам с помощью септы (по­перечной перегородки). На противоположных сторонах внут­ренней части клеточной стенки образуются два выступа, рас­тущие навстречу друг другу (от периферии к центру), в этих же местах ЦПМ образует мезосомы (впячивания). Располо­женные в мезосомах ферменты синтезируют материал клеточ­ной стенки. Поперечная перегородка первоначально фомиру-€тся из ЦПМ и пептидогликана; наружные слои синтезируют­ся позднее.

Клетки большинства Грам - бактерий делятся путем обра­зования перетяжки. В центре клетки с одной стороны ЦПМ и клеточная стенка постепенно прогибаются до слияния с про­тивоположной поверхностью клетки. Образованию поперечной перегородки или перетяжки предшествует деление ДНК, в ре­зультате чего в каждую дочернюю клетку попадает по одному нуклеоиду.

Актиномицеты размножаются главным образом экзоспора-ми (наружными спорами), которые образуются поодиночке или цепочками на концах спороносящих гиф - спороносцах, имеющих самую разнообразную форму (см. рис. 2). Сущест­вуют и другие способы размножения.

Образование эндоспор. Способностью к образованию эндо­спор (внутренних спор) обладают лишь некоторые палочко­видные Грам+ бактерии. Поскольку в каждой клетке образу­ется только одна спора, то спорообразование является не спо-




Рис. 7. Типы спорообразования у бактерий:

а - бациллярный; б - клостридиальный; в - плектридиальный

собом размножения, а покоящейся стадией клетки для перенесения неблагоприятных условий. Споры образуются при голодании, при избытке продуктов обмена веществ или несоот­ветствии температуры, влажности и рН их оптимальным зна­чениям для развития данного вида бактерий.

Различают три типа спорообразования (рис. 7). Если при образовании споры в центре клетки форма ее не меняется, то такой тип спорообразования называется бациллярным; он свойствен представителям рода ВасШиз. Если же клетка в се­редине утолщается и приобретает вид веретена, то такой тип спорообразования называется клостридиальным. Иногда спо­ра образуется ближе к концу клетки и тогда клетка приобре­тает вид теннисной ракетки - такой тип спорообразования на­зывается плектридиальным (рис. 7). Клостридиальный и плект­ридиальный типы спорообразования свойственны бактериям рода С1оз1:пс1шт.

Спорообразование - сложный процесс, в результате кото­рого в клетке формируется эндоспора, отличающаяся от веге­тативной клетки структурой и химическим составом (рис. 8). Эндоспора имеет наружную и внутреннюю мембраны, между которыми располагается кортекс (кора), сходный по химиче­скому составу с клеточной стенкой вегетативной клетки. По­верх наружной мембраны образуются многослойные покровы споры, состоящие в основном из белков. У некоторых бактерий снаружи споры формируется еще один слой - экзоспориум, со­стоящий из липидов и белков.

При спорообразовании происходит накопление специфиче­ского вещества - дипиколиновой кислоты, отсутствующей в ве­гетативной клетке, а также ионов кальция. Процесс образова­ния споры протекает * несколько часов. Когда спора сформиру­ется, оболочка и остальные части клетки разрушаются и спора освобождается.


Рис. 8. Схема строения бактериальной споры:

/ - нуклеоид; 2 - цитоплазма; 3 - внутренняя мембрана; 4 - кортекс; 5 - наружная мембрана; 6 - покровы, состоя­щие из нескольких слоев; 7 - экзоспориум

Споры необычайно устойчивы к воздействию температуры, например, споры возбудителя тяжелого пищевого отравления - ботулизма - выдерживают нагревание до 100 °С в течение 5-6 ч. Споры выносят высушивание, воздействие ультрафиолетовых лучей, ядовитых веществ и т. п. Устойчивость спор связана с тем, что их покровы труднопроницаемы, в них содержите» много липидов, а также дипиколиновой кислоты и кальция. Активность ферментов в них подавлена. Высокая термоустойчивость спор обусловливается низким содержанием в них воды, что предохраняет белки от денатурации при высоких температурах.

Споры бактерий могут сохранять жизнеспособность десятки и даже сотни лет. Попав в благоприятные условия, спора поглощает воду и набухает, ее термоустойчивость снижается, возрастает активность ферментов, под действием которых растворяются оболочки, и спора прорастает в вегетативную» клетку.

Порчу пищевых продуктов вызывают лишь вегетативные клетки бактерий. Поэтому необходимо знать условия, способствующие образованию спор и их прорастанию в вегетативные клетки, чтобы правильно выбрать способ обработки пищевых продуктов с целью предотвращения их порчи под влиянием бактерий.

Принципы классификации бактерий. В настоящее время типичной классификации бактерий нет, хотя работа по ее созданию ведется постоянно. Классификация всех живых существ основана почти полностью на непосредственно наблюдаемых и легко определяемых морфологических признаках организмов.У бактерий вследствие немногочисленности их морфоло­гических признаков создать общепринятую классификацию невозможно и требуются дополнительные признаки.

Кроме того, организмы в соответствии с основными принципами классификации живых существ должны быть расположены в ряды от наиболее простых к более сложным, т. е. как шло их постепенное развитие (эволюция). Такая классификация организмов является естественной. Самой мелкой единицей классификации является вид - группа организмов, наде­ленная общими стабильными признаками и происходящая от общего предка. Близкородственные виды группируются в более высокую систематическую единицу - род; близкие роды - в семейства, семейства - в порядки или отряды, порядки - в классы, а классы - в типы.

Однако микробиологи в настоящее время не располагают достаточными знаниями об эволюции бактерий. Поэтому большинство имеющихся классификаций бактерий являются искусственными. Искусственные классификации предназначаются для определения той или иной группы микроорганизмов, которая.представляет практический интерес для исследователя.

Научные названия микроорганизмов состоят из двух латинских слов: первое пишется с прописной буквы и означает род, второе - со строчной буквы и означает вид данного рода. Например: ВасШиз зиМШз (палочка сенная) - это бактерия, относящаяся к роду ВасШиз, палочковидной формы, образую­щая эндоспоры бациллярного типа, постоянно обитает на сене.

Для классификации бактерий используют в основном сле­дующие признаки: морфологические (форма клеток, наличие и характер расположения жгутиков, способ размножения, ок­раска по Граму, наличие эндоспор); физиологические (отно­шение к воздействию температуры, рН, кислорода, тип пита­ния, способ получения энергии, характер образующихся.продуктов); культуралъные (характер роста на различных пита­тельных средах культуры бактерий в массе, а не в виде отдель­ных клеток: на жидких средах это наличие пленки, мути, осадка; на плотных средах - тип колоний и их особенности).

В последние годы получила признание классификация бак­терий, предложенная Р. Мюрреем в 1978 г. Это искусственная классификация, в основу которой положено строение клеточ­ной стенки. Все бактерии, для которых характерно строение клеточной стенки по типу Грам+ бактерий, отнесены в отдел Тчгтаси1.ез*. Другой отдел - ОгасШси1ез - объединяет,все бактерии, которые имеют клеточную стенку, характерную для Грам - бактерий. Третий отдел объединяет особые формы бак­терий, лишенные настоящей клеточной стенки; они не играют роли в пищевых производствах и поэтому рассматриваться не будут. Бактерии, имеющие значение в пищевых производствах, относятся к первым двум отделам.

Отдел р1гтаси1ез. К нему относятся 4 группы; в ос­нову деления на группы положена форма клеток и способность образовывать эндоспоры и экзоспоры. Это кокки, две группы палочковидных бактерий, актиномицеты и родственные орга­низмы.

Кокки характеризуются округлой формой; деление клеток происходит в одной или нескольких плоскостях, при этом об­разуются различные сочетания клеток; кокки неподвижны, не образуют эндоспор. Многие микрококки являются возбудите­лями порчи пищевых продуктов, лейконосток является вреди­телем в сахарном производстве; некоторые стафилококки, раз­виваясь в пищевых продуктах, вырабатывают ядовитые ве-

* От лат. «кутикула» - кожица, «фирма» - солидная, «гратия» - изящная.


щества (токсины) и вызывают пищевые отравления. Сюда же* относятся молочнокислые стрептококки, используемые при про­изводстве кисломолочных продуктов, маргарина, сливочного масла и др.

Вторая группа - это палочки, образующие эндоспоры. К ним относится одно семейство, представители которого очень широко распространены в природе. Это одиночные илц соединенные в цепочки палочки, многие из них подвижны, имеют перитрихиальное жгутикование. Палочки образуют эндоспоры бациллярного типа (род ВасШиз) и клостридиаль-ного или плектридиального типа (род СЛозхгМшт). Многие являются.возбудителями порчи пищевых продуктов (например, гнилостные, маслянокислые бактерии). Имеется много возбу­дителей инфекционных болезней (сибирской язвы, столбняка) и пищевого отравления - ботулизма.

Третья группа - это палочки, не образующие эндоспор. К ним относится только одно семейство, включающее род Ьас1оЪасШиз. Это палочковидные, не образующие спор молоч­нокислые бактерии*. Чаще они представляют собой одиночные длинные и тонкие палочки, иногда - короткие палочки цепоч­ками. Являются вредителями в процессах бродильных произ­водств. Используются в производстве кисломолочных продук­тов, в.сыроделии, квашении овощей, в хлебопечении.

Четвертая группа - актиномицеты и родственные организ­мы. Актиномицеты - своеобразная группа бактерий, представ­ляющих собой длинные тонкие ветвящиеся нити без перегоро­док, называемые гифами, переплетение которых образует мицелий. Нижняя часть мицелия, врастающая в субстрат, на­зывается субстратным мицелием и служит для обеспечения организма питанием, верхняя часть мицелия возвышается над субстратом и называется воздушным мицелием. Размножают­ся актиномицеты экзоспорами, образующимися в спороносцах. Некоторые из актиномицетов представляют собой короткие ветвящиеся палочки. Встречаются на пищевых продуктах, могут вызвать их порчу, при которой продукты приобретают отчет­ливый землистый запах. Имеются и патогенные виды (тубер­кулезная и дифтерийная палочки). Актиномицеты являются основными продуцентами антибиотиков, получаемых в про­мышленных масштабах, а также витаминов группы В (В ь В 2 , В 3 , В 6 , В1 2).

Отдел (Зг асШсихез. Все представители Грам^ бак­терий не образуют спор и резко различаются по способности развиваться на свету и без него. Бактерии, встречающиеся в пищевых производствах, безразличны к свету. Они различа­ются по форме клеток и способу движения. По числу предста-

* Несмотря на то, что представители этого рода - палочки, не образую­щие спор, в научной литературе за ними сохраняется старое название Ьас1о-ЪасШиз.



вителей и значимости в природе и жизни человека наиболь­ший интерес из них представляют псевдомонады и энтеробак-терии.

Из псевдомонад для пищевых производств наибольшее зна­чение имеет обширный род Рзеиёотопаз. Это одиночные под­вижные палочки с одним или с пучком полярных жгутиков (монотрихи и лофотрихи). Псевдомонады очень широко рас­пространены в природе, активно участвуют в круговороте ве­ществ, часто обнаруживаются в водоемах и почве, загрязнен­ных различными соединениями, например пестицидами, участ­вуют и в их разложении. Многие из псевдомонад образуют флюоресцирующие пигменты, выделяющиеся в среду, и вызы­вают порчу пищевых продуктов (некоторые гнилостные, жиро-окисляющие и другие бактерии).

К Грам - палочкам относятся также уксуснокислые бакте­рии родов Асе1оЪае{ег (перитрихи) и 01исопоЬас1ег (моно-трихи), используемые в производстве уксуса. Многие из них являются вредителями в бродильных производствах.

В пищевых производствах наибольшее значение имеет мно­гочисленная кишечная группа бактерий - энтеробактерии. Это одиночные подвижные палочки, перитрихи, но встреча­ются и неподвижные формы. Некоторые из них постоянно на­селяют кишечник человека и животных (например, кишечная палочка), другие являются возбудителями инфекционных же­лудочно-кишечных заболеваний (дизентерии, брюшного тифа, паратифов), передающихся через пищевые продукты, а также возбудителями пищевых отравлений.

Классификация бактерий, имеющих значение в пищевых производствах и рассматриваемых в данном курсе, приведена на с. 20.

ЭУКАРИОТЫ (МИЦЕЛИАЛЬНЫЕ ГРИБЫ И ДРОЖЖИ)

Одним из трех царств, относящихся к надцарству,эукариот, являются грибы. Ранее считали, что грибы занимают проме­жуточное.положение между царствами растений и животных, так как ряд признаков сближает их как с животными, так и с растениями. Но в настоящее время грибы выделены в от­дельное царство Мусо1а. Эта обширная и разнообразная груп­па организмов включает до 100 тыс. видой.

Грибы широко распространены в природе. Они обитают в различных климатических зонах от тропиков до Арктики, особенно много их в почвах, в том числе высокогорных, на рас­тениях; встречаются они в пресных и соленых водоемах, в мес­тах с повышенной влажностью и т. п. Грибы для своего разви­тия нуждаются в органических веществах.

Среди грибов встречаются организмы, развивающиеся за счет органических веществ отмерших организмов; они участ­вуют в круговороте веществ в природе. Но имеются и такие,

Рис. 9. Мицелий грибов:

а - несептированный; б - септированный

которые могут существовать только в живых организмах и вызывать их заболевания. Некоторые из грибов выделяют ядовитые вещества - микотоксины. Многие грибы вызывают порчу пищевых продуктов.и повреждение разнообразных изде­лий и материалов, некоторые могут развиваться даже на опти­ческих поверхностях, где имеется мизерное количество смазки. Они утилизируют смазку и вызывают помутнение линз. Но грибы имеют и важное практическое значение, многие из них употребляются в пищу, используются в производстве этилово­го спирта, органических кислот, ферментов, антибиотиков, ви­таминов, некоторых сортов сыра и т. д.

Мицелиальные грибы. Царство грибов делится на семь классов, но объектами изучения микробиологии являются в ос­новном три, включающие мицелиальные грибы, - зигомицеты (ранее их называли плесневые грибы), аскомицеты и дейтеро-

Форма и размеры. Клетки мицелиальных грибов име­ют вытянутую форму в виде нитей (гифов), размеры которых достигают до 5-30 мкм в диаметре, что значительно превы­шает размеры бактериальной клетки.

Переплетение гиф образует тело гриба - мицелий, или грибницу (рис. 9). Большая часть гиф развивается над по­верхностью субстрата (воздушный мицелий), на которой рас­полагаются органы размножения, а часть - в толще субстра­та (субстратный мицелий). Гифы у большинства мицелиаль­ных грибов многоклеточные, в их клетках имеются поперечные перегородки - септы. Такой мицелий называют септирован-ным, он имеется у аскомицетов и дейтеромицетов. Мицелий зигомицетов несептированный и представляет собой одну ги­гантскую клетку с несколькими ядрами. Гифы растут за счет верхушечных клеток, и клетки гиф неодинаковы по длине.

Некоторые грибы на определенной стадии развития обра­зуют плодовые тела, внутри которых находятся органы раз-


Рис. 10. Схема строения грибной

1 - клеточная стенка; 2 - ядро; 3 - ядер­ная мембрана; 4 - рибосомы; 5 - аппарат Гольджи; 6 - цитоплазматиче^кая мембра-»на; 7 -лизосомы; 8 - эндоплазматическая сеть; 9 - митохондрии; 10 - цитоплазма

множения, покрытые сверху плотным переплетением гиф. У других видов грибов из плотных переплетений сильно разветвленных гиф образуют­ся склероцш, богатые запас­ными питательными вещества­ми. Они служат для перене­сения неблагоприятных усло­вий и являются покоящейся формой гриба.

Мицелиальные грибы не имеют жгутиков и относятся к неподвижным организмам.

Строение клетки. У мицелиальных грибов клетки

имеют строение, характерное

для клеток эукариотных микроорганизмов (рис. 10). У них имеется хорошо развитая система внутриклеточных элементар­ных биологических мембран (в отличие от прокариот, у кото­рых только одна мембранная структура внутри клеток - ци-топлазматическая мембрана). Внутриклеточные структуры эу-кариот, полностью"ограниченные от цитоплазмы такими мем­бранами, называются органеллами. К органеллам кроме ЦПМ.относятся ядро, митохондрии, эндоплазматическая сеть, аппа­рат Гольджи и лизосомы.

Снаружи клетка мицелиальных грибов покрыта многослой­ной жесткой клеточной стенкой, состоящей на 80-90% из по­лисахаридов. Основным из них является азотсодержащий полисахарид хитин. Полисахариды связаны с белками, липи-дами, полифосфатами. Под клеточной стенкой расположена ЦПМ, которая окружает цитоплазму. В цитоплазме располо­жено ядро; оно содержит ядрышко, хромосомы и окружено ядерной мембраной с порами. В ядрышке синтезируются и скапливаются предшественники рибосом, которые затем транспортируются через поры ядра в цитоплазму. У грибов в длетках бывает от одного до 20-30 ядер. В цитоплазме рас­сеяны рибосомы.

Митохондрии - мембранные структуры, играющие очень важную роль. Они представляют собой многокамерные мешоч­ки или трубочки с эластичными стенками, образующими впячивания - кристы (рис. 11). На них находятся окислительно-

Рис. 11. Схема строения митохонд­рий:

а - общая схема строения; б -продольный разрез митохондрии; / - наружная мито-хондриальная мембрана; 2 - внутренняя митохондриальная мембрана; 3 - кристы; 4 - матрикс

восстановительные ферменты (у прокариот эти ферменты локализованы в ЦПМ), участ­вующие в энергетическом об­мене. Поэтому митохондрии называют «силовыми станция­ми клетки», «энергетическими ансамблями» и т. п.

Эндоплазматическая сеть --мембранная система, состоя­щая из канальцев, пузырьков или цистерн, которые не име­ют строго определенной лока­лизации, а располагаются ли­бо по периферии клетки, либо вокруг ядра, либо пронизыва­ют всю цито

плазму. На них расположены различные фер­менты, ответственные за син­тез липидов, углеводов, за транспорт веществ внутри клетки. Аппарат Гольджи - система мембран, связанных с ядерной мембраной и мембранами эндоплазматической сети. Он распо­ложен на участке цитоплазмы, где нет рибосом. Роль аппара­та Гольджи полностью не выяснена. Предполагают, что в ап­парате Гольджи происходит синтез материала клеточной стенки и новых мембран, а также с его помощью осуществля­ется транспортирование веществ, синтезируемых в эндоплаз* матической сети, и удаление из клетки продуктов обмена.

Лизосомы представляют собой мембранные структуры ок­руглой формы. В них сосредоточены гидролитические ферменты (у прокариот они локализованы в ЦПМ), расщепляющие бел­ки, полисахариды, липиды.

В клетках мицелиальных грибов хорошо видны вакуоли - полости, окруженные мембраной и заполненные клеточным соком. Обычно они располагаются вблизи клеточной стенки, их число увеличивается по мере старения клеток. Основные за­пасные питательные вещества мицелиальных грибов - глико­ген, который образуется на средах с избытком сахара; метахро-матин, который в виде гранул находится в самих вакуолях, а в цитоплазме вблизи вакуолей накапливаются липиды в виде жи­ровых капель.

Размножение и классификация. Мицелиальные грибы размножаются бесполым и половым путем. Оба способа размножения связаны с образованием спор - наружных (экзо-споры) и внутренних (эндоспоры). Образованию спор при по­ловом размножении предшествует процесс слияния содержи­мого двух клеток и их ядер. Вновь образовавшееся ядро делится на несколько частей - спор. Кроме того, все грибы

Рис. 12. Зигомицеты:

1 - КЬ12ориз; б - Мисог - спорангий с эндоспорами; в - последовательные стадии обра­зования зигоспоры при половом размножении; г - проросшая зигоспора со спорангием

могут размножаться вегетативно - путем верхушечного роста
гиф, а также с помощью кусочков гиф и мицелия. Грибы, спо­
собные к половому размножению, относятся к совершенным
(аскомицеты, зигомицеты), а те, которые не имеют полового
размножения, относятся к несовершенным грибам (дейтеро-
мицеты). У грибов имеется большое разнообразие способов
и органов размножения. \

Класс 2у^отусе1;е5 (зигомицеты). Это наиболее просто организованные грибы. Мицелий у них несептирован-ный, многоядерный, имеет вид одной гигантской разветвленной клетки. К зигомицетам относятся- мукоровые грибы. Они широ­ко распространены в природе. Наибольшее значение имеют лредставители родов Мисог и КЫгориз.

Размножаются зигомицеты бесполым и половым путем (рис. 12). При бесполом размножении^в особых шаровидных вздутиях - спорангиях, формирующихся на концах длинных плодоносящих гиф - спорангиеносцах, образуются эндоспоры, называемые спорангиоспорами. Спорангиеносцы бывают оди­ночными (у грибов рода Мисог) или собранными в пучки с корневидными разрастаниями у основания - ризоидами (у грибов рода КЫгориз).

При половом размножении вначале происходит слияние двух многоядерных гиф мицелия, которые представляют собой обычно короткие образования с небольшим утолщением на концах. Затем происходит попарное слияние ядер. Заканчива­ется половое размножение образованием зиготы (зигоспоры), которая после периода покоя прорастает и образует короткую гифу со спорангием на конце. При прорастании споры происхо­дит деление ядер. Многоядерная цитоплазма спорангия распа­дается на множество спорангиоспор, которые в благоприятных условиях могут прорасти ч в мицелий.

Рис. 13. Конидиеносцы аскомицетов: а - у грибов рода АзрегдШиз; б - у грибов рода РегпсПшт; / - вегетативный мицелий; 2 - конидие-носец; 3 - фиалиды; 4 - конидии

Многие грибы рода* Мисог вызывают пор­чу пищевых продуктову образуя пушистые се­рые налеты. Грибы ро­да КЫгориз вызывают так называемую «мяг­кую гниль» ягод, пло­дов и овощей. Муко-ровые грибы образуют органические кислоты и ферменты, способны вызывать слабое спир 1 -товое брожение, в свя­зи с чем они применя­ются в некоторых стра­нах Востока для полу­чения напитков.

Класс Аз сот у-се1;е5 (а с коми це-ты, или сумчатые грибы). К ним относятся представи­тели широко распространенных грибов родов РешсШшгп и Аз-рег^Шиз.

Аскомицеты имеют хорошо развитый многоклеточный ми­целий. Бесполое размножение у них происходит с помощью зкзоспор, называемых конидиями, которые формируются на концах специализированных гиф - конидиеносцев. У аспергил-лов они простые, без перегородок, вздутые на вершине в виде пузыря, на котором располагаются фиалиды, отчленяющие цепочки шаровидных конидий. У пенициллов конидиеносцы многоклеточные, в виде кисточки, состоящей из мутовок фиа-лид (рис. 13). Конидии бывают различной окраски (зеленые, желтые, черные, голубые и т. п.). Конидии распространяются воздушными потоками, насекомыми, каплями росы, дождя и, прорастая, образуют новый мицелий.

Половое размножение аскомицетов происходит путем слия­ния содержимого и ядер двух клеток разных гиф, после чего происходит деление ядра; вокруг новых ядер концентрируется цитоплазма и образуется споровая оболочка. Материнская клетка покрывается толстой оболочкой и превращается в аск (сумку), внутри которого чаще всего находится 8 аскоспор. Сверху сумка покрывается переплетением гиф, образуя плодо­вое тело.

Рис. 14. Конидиеносцы и конидии различных родов несовершенных грибов: а - Во1гуИз; б - Ризагшт; в - АИегпаНа; г - С1ас1о5ропит

Однако некоторые представители сумчатых грибов нашли практическое применение. Так, отдельные представители пени-цилловых грибов используются как продуценты антибиотика пенициллина в промышленных масштабах, другие - в произ­водстве сыра сортов «Рокфор», «Камамбер». Аспергиллы про­дуцируют органические кислоты, в связи с чем применяются для промышленного получения лимонной кислоты (Азрег§Шиз ш§ег). Многие аспергиллы используются для промышленного получения различных ферментных препаратов, используемых в отраслях пищевой и легкой промышленности.

Класс Оеи1еготусе1ез (дейтеромицеты). Дей-теромицеты, или несовершенные грибы, имеют многоклеточный мицелий. Половое размножение у них отсутствует, они размно­жаются только бесполым путем, в основном конидиями, кото­рые, как и конидиеносцы, имеют самую различную форму и вид.

Конидиеносцы чаще всего многоклеточные, но могут быть одиночные - ветвящиеся или в виде пучков, со вздутиями. Конидии могут быть одноклеточными, многоклеточными, иногда с продольными и поперечными перегородками (рис. 14). По форме конидии бывают шаровидные, эллипсовидные, ните-


видные, серповидные, звездча­тые и др. Некоторые дейтеро-мицеты (например, молочная плесень) размножаются не ко­нидиями, а особыми клетка­ми - артроспорами, которые образуются в результате фраг­ментации конидиеносца или гифы (рис. 15).

Несовершенные грибы ши­роко распространены в приро­де. Большинство из них вызы­вает различные заболевания? растений и порчу продуктов. Так, представители рода Ри~ запит являются возбудителя­ми заболевания плодов и овощей (фузариоз), вызывают порчу картофеля (сухая гниль). Некоторые виды этого гриба выра­батывают ядовитые для человека вещества, вызывающие тя­желые пищевые отравления. Грибы рода ВоггуИз вызывают порчу лука, капусты, моркови, помидоров, а вместе с другими грибами - кагатную гниль сахарной свеклы. Грибы рода А1-{егпапа поражают корнеплоды в период хранения (черная гчшль). Сердцевинную гниль свеклы вызывает гриб рода РЬо-та. Молочная плесень ОеоШсЬит сапсНйит вызывает порчу квашеных овощей, сметаны, творога и др., образуя на поверх­ности белую бархатистую пленку. Грибы из рода С1ас1озропига часто обнаруживаются на пищевых продуктах, хранящихся в холодильниках.

Дрожжи. Группа дрожжей объединяет одноклеточные грибные организмы, не имеющие настоящего мицелия.

Дрожжи широко распространены в природе. Они обитают в основном на растениях, где имеются сахаристые веще"ства, которые они сбраживают (нектар цветов, сочные фрукты, яго­ды, особенно перезрелые и поврежденные, листья, стволы бе­резы во время сокотечения и дуба во время слизетечения, почва). Переносятся дрожжи ветром, дождем и насекомыми.

Форма и размеры. Дрожжи могут иметь овальную, яйцевидную, округлую, лимо­новидную, реже - цилиндри­ческую, треугольную, серпо­видную, стреловидную, колбо-видную формы клеток. Разме­ры дрожжей варьируют у раз­ных видов от 1,5 - 2 до 10 мкм в поперечнике и до 2---20 мкм (иногда до 50 мкм) в длину.

Рис. 1.6. Схема строения дрожжевой клетки:

1 - цитоплазматическая мембрана; 2 - клеточная стенка; 3 - ядрышко; 4 - ядро; 5 - жировые капли; 6 - митохондрии; 7 - вакуоль; 8 - гранулы полифосфата; 9 - эндоплазматическая сеть; 10 - диктиосо-мы; 11 - почковый рубец; 12 - рибосомы; 13 - цитоплазма

Некоторые дрожжи на определенной стадии развития могут образовывать мицели-альные структуры - псевдомицелий. Дрожжи, как и все гри­бы, являются неподвижными организмами.

Строение клетки. Дрожжи, как и мицелиальные грибы, относятся к эукариотам и имеют сходное с ними строение-клетки, но имеются и некоторые различия (рис. 16). Клеточ­ная стенка дрожжей, в отличие от грибов, на 60-70% состоит из полисахаридов глюкана и маннана, связанных с белками." и липидами, и лишь небольшое количество (1-3%) составля­ет хитин, который вкраплен в стенку в виде гранул. У ряда? дрожжей в определенных условиях могут образовываться сли­зистые капсулы различной толщины полисахаридной природы.. Клетки таких дрожжей могут склеиваться друг с другом, обра­зовывать хлопья и оседать на дно сосудов, в которых они раз­виваются.

Клетки дрожжей, как и грибов, имеют хорошо развитый:; мембранный аппарат - ЦПМ, эндоплазматическую сеть, аппа­рат Гольджи, лизосомы, митохондрии. В цитоплазме имеется-ядро. Рибосомы у дрожжей располагаются в цитоплазме и на? внешней стороне ядерной мембраны. Имеются вакуоли и вклю­чения запасных питательных веществ: липидов (особенно их много у дрожжей - продуцентов липидов), гликоген, метахро-матин. Клеточные структуры дрожжей выполняют те же-функции, что и у грибов.

Размножение и классификация. Дрожжи раз­множаются вегетативно и спорами, образующимися бесполым и половым путем. Способ размножения является важным-признаком для классификации дрожжей. К вегетативным спо­собам размножения относятся: почкование, деление и почкую­щееся деление (рис. 17).



Способы вегетативного размножения дрожжей: почкование; а- почкование, б-деление; в - почкующееся деление

Почкование является.наиболее распространенным спосо­бом размножения дрожжей. При почковании на поверхности материнской (делящейся) клетки возникает маленький буго­рок- почка, которая постепенно увеличивается дочти до раз­меров материнской клетки и превращается в дочернюю клетку. Она отделяется от материнской, оставляя на месте прикрепле­ния почковый рубец. На этом месте почка больше не образу­ется. Может образовываться одна почка (полярное почкова­ние), две почки на разных концах материнской клетки.(бипо­лярное почкование), в нескольких местах поверхности мате­ринской клетки (множественное почкование). Дочерние клетки могут не отделяться от материнской и оставаться соединенными с ней. Почкование характерно для дрожжей овальной и округ­лой формы.

У некоторых дрожжей при почковании дочерние клетки не отделяются от материнской, а вытягиваются в длину и продол­жают образовывать все новые и новые почки, что приводит ж образованию ложного мицелия (псевдомицелий). Псевдоми-аделий характерен для пленчатых дрожжей.

Деление клетки в результате образования в ней поперечной перегородки - септы - характерно для дрожжей цилиндриче­ской формы.

Почкующееся деление характеризуется тем, что образова­ние дочерних клеток начинается с почкования, а заканчивается появлением хорошо заметной септы в районе перешейка. Такой способ размножения характерен для дрожжей лимоновидной формы.

Любому вегетативному способу размножения предшествует деление ядра, при котором одно из вновь образовавшихся ядер вместе с цитоплазмой и частью клеточных структур переходят в дочернюю клетку и они получают возможность самостоя­тельно существовать. У некоторых дрожжей имеется способ бесполого размножения с помощью бесполых спор, образую­щихся без слияния дрожжевых клеток. Бесполые споры - эндо­споры - нередко появляются в неопределенном,числе в старых: культурах дрожжей, размножающихся делением и образую­щих мицелий.

Половое размножение у дрожжей происходит также с по­мощью спор, но их образованию предшествует процесс копу­ляции (слияние содержимого двух клеток и их ядер). Обра­зуется зигота, в которой затем формируются споры: ядро делится, вокруг новых ядер уплотняется цитоплазма, и они покрываются плотной оболочкой. Зигота со спорами внутри 1 называется аском (сумкой), а споры- аскоспорами. Такие дрожжи относятся к классу аскомицетов, и их называют аскомицетовыми дрожжами. Аскоспоры могут образовывать только молодые клетки, выращенные на полноценной питатель­ной среде и перенесенные в условия голодания, плохого снаб­жения кислородом и влагой. У различных видов дрожжей в аске образуется 2-4, а иногда 8 спор.

При благоприятных условиях аскоспоры выходят из аска и превращаются в вегетативные клетки. У некоторых видов дрожжей могут сливаться ядра материнской и дочерней кле­ток или ядра двух сестринских почек. Иногда происходит ко­пуляция прорастающих спор соседних клеток.

Аскоспоры у дрожжей могут быть овальными, круглыми, бо­бовидными, игловидными, шлемовидными, кепковидными,. с гладкой, морщинистой поверхностью, с бородавчатыми или шиловидными выростами и т. д. Споры дрожжей, так же как и споры мицелиальных грибов, выполняют двойную функцию: служат для перенесения неблагоприятных условий, но главное, в отличие от эндоспор бактерий, они служат для размножения. Споры дрожжей более устойчивы, чем вегетативные клетки, но* менее устойчивы, чем бактериальные споры. Так, споры дрож­жей выдерживают нагревание при температуре на 10° больше, чем вегетативная клетка (40-50 °С), а споры бактерий - на 50-60 °С больше, чем вегетативные клетки (60-120 °С).

Поскольку дрожжи по существу являются одноклеточными немицелиальными грибами, они включены в классификацию* грибов. Однако в отдельную систематическую единицу они не выделены, а распределены по трем классам грибов - аскоми­цетов, базидиомицетов и дейтеромицетов. Для микробиологии пищевых производств имеют значение лишь аскомицетовые и несовершенные дрожжи. Между этими дрожжами имеется принципиальное различие: у аскомицетовых дрожжей имеется. половой процесс и они вызывают энергичное спиртовое броже­ние. .Несовершенные дрожжи полового процесса не имеют и, как правило, вызывают слабое спиртовое брожение или вооб­ще его не вызывают.

Аскомицетовые дрожжи. Включают примерно 2 /3 дрожжей. Среди них наибольшее практическое значение имеют сахаромицеты, объединяющие более половины известных родов-дрожжей. Особо важная роль принадлежит роду сахаромицеты, все виды которого вызывают энергичное спиртовое брожение. Дрожжи этого рода размножаются бесполым спо­собом (почкование) и с помощью аскоспор, которые образуют -половым путем.

В пищевых производствах наиболее широко используются -два вида дрожжей этого рода: Сахаромицес церевизия (круп­ные овальные клетки) в производстве этилового спирта, пива, -кваса и в хлебопечении и Сахаромицес эллипсойдес (крупные ^эллиптические клетки) - их используют преимущественно в виноделии. В каждом из этих производств применяют свои, специфические расы (разновидности) данных видов дрожжей, обладающие наиболее ценными производственными свойст­вами.

К аскомицетовым дрожжам относятся и другие роды дрож­жей. Это род Шизосахаромицеты, клетки которых имеют па­лочковидную форму и размножаются делением или с помощью «аскоспор, образующихся в результате полового размножения *(их количество 4-8). Дрожжи этого рода вызывают спирто­вое брожение. Вид З Шизосахаромицес помбе используется в бродильной промышленности в странах с жарким климатом, например,в Африке, где производят пиво сорта «Помбе». Дрож­жи рода Сахаромикоды имеют крупные клетки лимоновидной формы. Они размножаются способом почкующегося деления на обоих концах "клетки (биполярно) и с помощью аскоспор (их количество 2-4), которые располо­жены парами и образуются половым путем. Причем при поло­вом способе происходит копуляция спор в аске, а не слияние зклеток дрожжей. Эти дрожжи вызывают спиртовое брожение, йю они являются вредителями в виноделии, так как образуют (продукты, придающие винам неприятный прокисший запах.

Некоторые аскомицетовые дрожжи используются в микро­биологической промышленности для получения липидов и ви­таминов. Так, дрожжи рода Липомицес имеют крупные круг­лые клетки, которые в старых культурах заполнены целиком большой каплей жира. Обычно они имеют хорошо выражен­ные капсулы. Дрожжи рода Липомицес размножаются почко­ванием и аскоспорами, число которых у некоторых видов мо­жет доходить до 30 в одном аске.

Несовершенные дрожжи. Относятся к классу дей-теромицетов. Они не образуют спор, поэтому эти дрожжи част^, называют аспорогенными. Размножаются они почкованием. Несовершенные дрожжи вызывают либо слабое брожение, либо не вызывают его вообще, поэтому их часто называют не­сахаромицетами.

Многие из них являются причиной порчи пищевых продук­тов и являются вредителями ряда пищевых производств. Одна­ко некоторые из несовершенных дрожжей нашли полезное практическое применение. Среди несовершенных дрожжей наи­большее значение имеют роды Кандида, Торулопсис и Родоторула.

Дрожжи рода Кандида имеют удлиненную форму клеток, сочетания которых образуют примитивный псевдомицелий. Многие из них не вызывают спиртовое брожение и являются вредителями в бродильных производствах (например, Кандида микодерма), так как, будучи аэробами, окисляют спирт до ди: оксида углерода (углекислого газа) и воды. Другие представи­тели рода Кандида являются вредителями в дрожжевом произ­водстве, снижают качество хлебопекарных дрожжей, так как относятся к слабосбраживающим видам. Некоторые из них вызывают порчу квашеных овощей, безалкогольных напитков и ряда других продуктов. Среди этих дрожжей имеются пато­генные виды, вызывающие кандидозы, поражающие сли­зистые оболочки ротовой полости, носоглотки и других орга­нов человека. Различные виды дрожжей рода Кандида исполь­зуются для получения кормового белка и белково-витаминных концентратов (БВК).

Дрожжи рода Торулопсис имеют мелкие круглые или овальные клетки. Многие виды способны вызывать слабое спиртовое брожение и используются в производстве кефира и кумыса. Некоторые применяются для промышленного полу­чения кормового белка.

Дрожжи рода Родоторула имеют круглые, овальные или удлиненные клетки, последние образуют псевдомицелий. Коло­нии таких дрожжей красные и желтые благодаря наличию пигментов каротиноидов, являющихся провитамином А. Эти дрожжи используются для промышленного получения кормо­вых белково-каротиноидных концентратов, которые служат источником жирорастворимого витамина А для животных. Другие представители этого рода накапливают в клетках мно­го липидов и используются в микробиологической промышлен­ности как продуценты липидов наряду с представителями не­совершенных дрожжей другого рода - Криптококкус.

ВИРУСЫ

Изобретение электронного микроскопа позволило впервые наблюдать мельчайшие организмы - вирусы и фаги. Вирусы часто называют фильтрующимися за их способность проходить через поры бактериологических фильтров, которые задержива­ют бактерии при механическом способе стерилизации. Вирусы были открыты в 1892 г. русским ботаником Д. И. Ивановским при изучении болезни табака - табачной мозаики. Их разме­ры колеблются от 10-12 нм (вирусы ящура, полиомиелита) до 200-350 нм (вирусы оспы, герпеса).

Вирусы не имеют клеточного строения. Они бывают шаро­образной, палочковидной, нитевидной и сперматозоидной фор­мы. Вирусная частица называется вирионом. Она состоит из нуклеиновой кислоты (ДНК или РНК) и белка глобулина; некоторые вирусы содержат также липиды и углеводы. Харак-


Рис. 18. Схема строения фага:

1 - головка; 2 - ДНК; 3 - отросток; 4 - стержень; 5 - базаль-ная пластинка с шипами; 6 - нити отростка

терной особенностью вирусов является их способность к образованию кристаллов, что долгое время служило причиной споров о жи­вой или неживой природе вирусов. Впослед­ствии было доказано, что кристаллы - это нуклеиновая кислота и белок. Затем был ус­тановлен ряд свойств, подтвердивших пред­ставление о живой природе вирусов, - спо­собность к самовоспроизведению (размноже­нию), изменчивость, приспособляемость к ус­ловиям существования, а также способность вызывать инфекционные процессы. Развитие и размножение вирусов возможно только в клетках живого организма - хозяина, т. е. они являются па­разитами человека, вызывая инфекционные заболевания (грипп, полиомиелит, корь, ветряная оспа и др.), а также животных и растений.

Для лечения некоторых заболеваний, вызванных вирусами гриппа, герпеса и аденовирусами, применяют ферментные пре­параты- нуклеазы, вызывающие разрушение нуклеиновых кислот, что лишает вирусы способности к самовоспроизведе­нию, а следовательно, ликвидирует их инфекционность.

В 1898 г. русский ученый Н. Ф. Гамалея при изучении си­бирской язвы крупного рогатого скота впервые наблюдал, что спорообразующие палочки - возбудители болезни - растворя­ются под влиянием какого-то агента. В 1915 г. английским микробиологом Ф. Туортом и в 1917 г. канадским микробиоло­гом Ф. Д"Эррелем была установлена природа этого явления. Оно получило название бактериофагии, а возбудитель - бак­териофага («пожиратель бактерий»).

Размеры фагов колеблются от 40 до 140 нм. Бактериофаги имеют вид многогранной головки со стержнем, покрытой снару­жи белковой оболочкой (рис. 18). Внутри стержня имеется ка­нал. Головка фага заполнена молекулой ДНК. У основания стержня имеется базальная пластинка с шипами и нитями.

Воздействие фага на бактериальную клетку происходит в несколько стадий (рис. 19): адсорбция фага на бактериаль­ной клетке с помощью базальной пластинки с зубцами и ни­тями, проникновение ДНК из головки фага по каналу в бакте­риальную клетку, в которой затем под влиянием фаговой ДНК


Рис* 19. Схема развития фага в бактериальной клетке:

а - адсорбция; б - переход ДНК в клетку; в - перестройка обмена веществ в клетке;

г - образование новых частиц бактериофага; д - растворение клеточной стенки

происходит полная перестройка обмена веществ, синтезиру­ется уже не бактериальная ДНК, а фаговая, что приводит к образованию в бактериальной клетке новых частиц фага растворение клеточной стенки бактерии, ее гибель.

Бактериофаги наносят большой вред в молочной промыш­ленности (производстве сыров, творога, сметаны) и в произ­водстве маргарина. Они поражают в основном молочнокислые стрептококки заквасок для получения этих продуктов. Под влиянием бактериофага клетки стрептококков лизируются (растворяются) и погибают. В антибиотической промышлен­ности актинофаги лизируют производственную культуру акти­номицетов - продуцентов антибиотиков.

В медицине бактериофаги применяются для лечения неко­торых заболеваний, например дизентерии.

Морфология микроорганизмов изучает форму и строение их клеток, способы передвижения и размножения. Микроорганизмы различаются по внешнему виду и по размерам. Строение клеток микроорганизмов также различно, в связи с чем они относятся к различным систематическим группам.

Все живые организмы на Земле, имеющие клеточное строение, делят на два надцарства: прокариоты и эукариоты. Это деление живых организмов основано главным образом на особенностях строения ядерного аппарата. В клетках прокариот ядро отсутствует. Ядерный аппарат их представлен молекулой ДНК, расположенной в ядерной зоне непосредственно в цитоплазме. Клетки эукариот имеют ядро, отделенное от цитоплазмы двойной ядерной мембраной.

БАКТЕРИИ

Известно около 4000 видов бактерий. Их разнообразие особенно выражено в отношении физиолого-биохимических свойств. В определенной степени оно проявляется и в морфологии.

Величина клеток различных бактерий сильно варьирует. Размеры многих бактериальных форм находятся в пределах 0,5-10 мкм. Однако величина ряда бактерий не укладывается в эти границы. Среди них есть немало относительно крупных форм, есть и крайне мелкие формы. Значительной длины достигают, например, нитчатые бактерии рода Beggiatoa - до 60 мкм и более и Saprospira - до 500 мкм. Это одни из наиболее крупных бактерий. Гигантские формы встречаются среди спирохет: длина некоторых достигает 500 мкм. Мельчайшие из известных организмов клеточного строения - микоплазмы. Размеры отдельных форм микоплазм не превышают 0,1-0,2 мкм, что лежит на границе или даже за пределами разрешающей способности светового микроскопа. У одного и того же вида бактерий размеры клеток могут в большей или меньшей степени варьировать в зависимости от возраста культур и (или) от условий культивирования. У многих бактерий особенно заметно меняется длина клетки. Диаметр клеток является более устойчивым признаком.

Основная масса бактерий - одноклеточные организмы. Но нередко клетки после деления не расходятся и образуют сочетания различной формы, которая определяется расположением делящей перегородки. Эти сочетания не равноценны многоклеточным организмам, так как каждая клетка в них автономна и может существовать самостоятельно после отделения от остальных клеток.

Бактерии, за исключением микоплазм, имеют определенную форму клетки. У большинства бактерий она поддерживается благодаря прочной (ригидной) клеточной стенке. Клеточная стенка спирохет эластична, и их извитая форма поддерживается с помощью аксиальных фибрилл, расположенных под клеточной стенкой. Форма клетки многих бактерий отличается постоянством и сохраняется в течение всей жизни. Но есть бактерии, у которых наблюдается более или менее выраженный плеоморфизм. Нередко он отражает стадии цикла развития микроорганизма. В этом случае обнаруживается упорядоченное, регулярное чередование определенных форм. Изменения морфологии могут происходить и под влиянием условий культивирования. Полиморфность микоплазм связана с отсутствием у них клеточной стенки.

Морфологические типы бактерий по сравнению с высшими организмами немногочисленны. Клетки значительной части бактерий имеют сферическую, цилиндрическую или спиралевидную форму. Существует обширная группа ветвящихея бактерий, сравнительно небольшое количество нитчатых форм и бактерий, образующих выросты (простеки).

Сферические бактерии - кокки. Под микроскопом они имеют форму шара. Многим коккам свойственно образование различных сочетаний (рис. 2). Кокки, делящиеся в одной плоскости и одном направлении, могут образовывать пары (диплококки) или цепочки (стрептококки) клеток. Когда деление происходит равномерно в двух взаимно перпендикулярных плоскостях, возникают группы

Рисунок 2. Сочетания кокков: 1 - диплококки; 2 - стрептококки; 3 - тетракокки и сарцины; 4 - стафилококки и микрококки

из четырех клеток - тетракокки, а если в трёх, то образуют пакеты правильной формы - сарцины. При неравномерном делении в нескольких плоскостях наблюдаются скопления неправильной формы, напоминающие гроздь винограда. Они свойственны представителям стафилококков и микрококков. Микрококками часто называют и одиночные шаровидные клетки.

Под влиянием различных факторов среды некоторые кокки могут превращаться в овальные, конические и эллипсоидные клетки.

Цилиндрические (палочковидные) бактерии под микроскопом имеют вид палочек. Это одна из наиболее многочисленных групп бактерий. Разные виды могут заметно отличаться друг от друга размерами клеток. Одной из самых крупных палочковидных бактерий является Васilllus megaterium. Ее длина 5-10 мкм, поперечник около 1 мкм. К наиболее коротким относятся риккетсии, размеры которых могут быть всего 0,3 Х 1,0 мкм. В тех случаях, когда длина лишь ненамного превышает диаметр клетки, палочки трудно отличить от кокков. Концы палочек бывают прямыми, округлыми или заострёнными (рис. 3).

Рисунок 3. Палочковидные бактерии: 1 - Pseudomonas aeruginosa ; 2 - Bacillus mycoides ; 3 - Васillus megaterium ; 4 - Cytophaga

Палочковидные бактерии нередко образуют пары или цепочки клеток. Парные сочетания клеток наблюдаются, например, у определенных видов рода Pseudomonas , длинные цепочки можно увидеть в культуре Bacillus mucoides . Для ряда палочковидных бактерий характерен выраженный плеоморфизм.

Изменение формы, связанное с развитием бактерий, наблюдается у видов Azotobacter и Rhizobium ; у миксобактерий и риккетсий. Так уже в молодой культуре азотобактера можно видеть клетки не только палочковидной, но и овальной или кокковидной формы. Они часто соединяются попарно или образуют скопления, а иногда цепочки из 4 и более клеток. В старых культурах преобладают крупные округлые, неправильной формы покоящиеся клетки-цисты.Риккетсии, помимо коротких палочек длиной 1-1,5 мкм могут быть представлены кокками диаметром менее 0,5 мкм, длинными палочками - 3-4 мкм, или причудливо изогнутыми нитями, длина которых достигает 40 и более микрометров. Есть бактерии, у которых изменение формы клетки связано со спорообразованием.

В неблагоприятных условиях в культурах многих палочковидных бактерий возникают различные дегенеративные формы с признаками лизиса, гранулированием содержимого, большими вакуолями и др. Это можно наблюдать, например, в культуре Bacillus megaterium (рис. 3).

Рисунок 4 Извитые формы: 1 - вибрионы; 2 - спириллы; 3 - спирохеты

Бактерии, образующие выросты (простеки). Основную часть этой группы составляют бактерии, у которых простеки - это выпячивания клеточного содержимого, окруженного клеточной стенкой цитоплазматической мембраной и не отделенного от клетки перегородкой. У одних бактерий, например у видов рода Hyphomicrobium, образование выростов связано с размножением. Клетки представителей этого рода чаще имеют вид палочек с заостренными концами, но бывают также овальной, яйцеобразной или бобовидной формы. Нитевидные выросты образуются на одном или обоих полюсах клетки. Bыросты могут ветвиться, давая гифоподобные структуры. На конце каждой ветви формируется почка, являющаяся дочернеи клеткой. Иногда созревшие почки не отделяются от материнской клетки и тоже образуют выросты и почки. Тогда возникает скопление гиф и клеток (рис. 5).

Рисунок 5 Бактерии, образующие выросты: 1 - Caulobacter ; 2 - Hyphomicrobium ; 3 - Ancalomicrobium ; 4 - Gallionella

У других бактерий простеки не имеют отношения к размножению. К таким бактериям принадлежат, например, виды рода Caulobacter и Ancalomicrobium . Клетки Caulobacter - это слегка изогнутые палочки с одним полярным жгутиком. Сравнительно короткий вырост - стебелек возникает на одном полюсе клетки. На конце стебелька имеется небольшое утолщение из липкого материала - фиксатор. С его помощью клетки прикрепляются к какому-либо субстрату, а иногда друг к другу. В последнем случае образуются характерные скопления. У видов Аnсаlomicrobium на клетке неправильной формы возникает несколько простеков - от 2 до 8. Клетка приобретает причудливый звездообразный вид.

Иногда к стебельковым относят бактерии, образующие слизистые придатки, не связанные с цитоплазмой клетки. Это, например, виды Gallionella, бобовидные клетки которой выделяют с вогнутой стороны слизь в виде тонкой нити. Под микроскопом такая нить выглядит как спирально изогнутая лента.

Рисунок 6. Нитчатые бактерии: 1 - Beggiatoa ; 2 - Thiothrix ; 3 - Saprospira ; 4 - Simonsiella ; 5 - Caryophanon ; 6 - цианобактерии класса Hormogoneae ; 7 - Leptothrix ; 8 - Sphaerotilus ; 9 - Crenothrix

Это сравнительно небольшая группа многоклеточных организмов. Они представляют собой цепочки (трихомы) из цилиндрических, овальных или дисковидных клеток. Типичными представителями нитчатых форм являются бактерии родов Beggiatoa и Thiothrix (рис.6). Их нити имеют равную толщину на всем протяжении. Трихомы видов Thiothrix собраны в пучки и прикрепляются основанием к субстрату. Нити Leucothrix , подобно Thiothrix , большей частью также растут пучком, прикрепляясь к твердой поверхности, но, в отличие от Thiothrix , они сужаются к концу.

Трихомы видов Saprospira скручены в виде спирали, а у видов Simоnsiella они уплощены и похожи на ленты. У видов Caryophanoп поперечные клеточные стенки большинства составляющих нити клеток не сплошные, так как их формирование отстает от роста трихома. Нитчатые бактерии относятся к крупным микроорганизмам. Так, длина нитей некоторых представителей рода Caryophanon достигает 40 мкм, а толщина 4 мкм. Нити зеленых бактерий группы Chloroflexus могут иметь длину 300 мкм. Особенно длинные трихомы образуют, как уже отмечалось, виды Beggiatoa и Saprospira (до 500 мкм).

Ветвящиеся бактерии. К этой многочисленной группе относятся истинные актиномицеты, нокардии, микобактерии, коринеподобные бактерии и ряд других организмов. Истинные актиномицеты имеют сильноразветвленный мицелий, сохраняющийся в течение всей жизни, что делает их внешне сходными с мицелиальными грибами (рис. 7). Однако общая длина нитей актиномицетов обычно не превышает нескольких миллиметров, а толщина составляет всего 0,5-1,5 мкм, тогда как длина грибного мицелия достигает нескольких сантиметров, а диаметр может быть около 50 мкм. У представителей рода Streptomyces в мицелии образуются перегородки, но их мало, поэтому составляющие его клетки в основном многоядерные. Мицелий большинства актиномицетов лишен перегородок, и этим он напоминает многоядерный несептированный мицелий фикомицетов.


Рисунок 7. Мицелий актиномицета (1) и гриба (2) при одинаковом увеличении

У нокардий и микобактерий мицелиальный тип развития имеет временный и часто ограниченный характер. Виды рода Nocardia образуют обильный, недифференцированный мицелий на начальных стадиях развития. В дальнейшем он распадается на палочковидные или сферические фрагменты.

Микоплазмы . Это довольно большая группа бактерий, у которых нет клеточной стенки. Поэтому они очень полиморфны. В культуре одного вида можно одновременно обнаружить мелкие зерновидные образования, кокковидные, эллипсовидные, грушеобразные, дисковидные, палочковидные и даже разветвленные и неразветвленные нитевидные формы (рис. 8).Размеры крупныхклеток микоплазмдостигают 10 мкм, а величина мелких структур не превышает 0,1 мкм.


Рисунок 8.

Большинство бактерий размножаются путем бинарного поперечного изоморфного деления. Такой способ размножения свойствен коккам, многим палочковидным формам и вибрионам, спириллам, спирохетам, некоторым нитчатым бактериям. Клетки основной массы бактерий делятся в одной плоскости. У многих кокков деление происходит в нескольких плоскостях. Расходящиеся после деления клетки большинства бактерий располагаются одна за другой или беспорядочно, а у видов Arthrobacter и Corynebacteriuт под углом друг к другу. Если после деления клетки не расходятся, то наблюдается образование различных скоплений клеток - пар, цепочек, пакетов и другие. В ряде случаев имеет место неравномерное деление. Фрагментацией мицелия или его рудиментов на палочки и кокки размножаются, например, виды Nocardia и Mycobacteriuт . Размножение распадом нитей на участки наблюдается у Beggiatoa и Saprospira . Две неодинаковые клетки - одна подвижная со жгутом, но без простеки, а другая неподвижная без жгутика, но со стебельком - образуются при делении клеток Caulobacter (рис. 9). К делению способны только неподвижные клетки с простекой.

Некоторые бактерии (виды Hyphoтicrobiuт и Rhodopseudoтona s, Ancaloтicrobiuт и др.) размножаются почкованием. У Rhodopseudoтoпas и Aпcaloтicгobiuт почки формируются прямо на поверхности клеток, а у Hyphoтicrobiuт - на концах гиф.

Рисунок 9. Схема роста и деления клеток Caulobacter

Рисунок 10. Гонидии (1) и гормогонии (2) нитчатых бактерий

У бактерий известны и более сложные способы размножения. Нитчатые цианобактерии класса Chaтaesiphoneae и бактерии родов Thiothrix, Caryophanon , Sphaerotilus , Leptothrix , Leucothrix размножаются с помощью специальных репродуктивных одиночных подвижных клеток - гонидий (рис. 10), которые образуются в результате многократного деления концевых клеток нити. Подвижность гонидий связана с наличием у них жгутиков. Для нитчатых цианобактерий класса Horтogoпeae характерно размножение гормогониями. Это короткие цепочки, возникающие, как и гонидии, при делении клеток нити. Они не имеют жгутиков и перемещаются скольжением благодаря выделению слизи. Размножение гормогониями наблюдается также у видов Leucothrix.

Актиномицеты размножаются главным образом подвижными или неподвижными спорами (конидиями). Конидии располагаются поодиночке или цепочками, непосредственно на мицелии, на концах спороносящих гиф - спорангиеносцах (спорангиофорах) или в специальных органах спороношения - спорангиях. Спорангиеносцы (и соответственно цепочки спор) разных видов различаются между собой. Они могут быть длинными или короткими, прямыми, волнистыми или спиралевидными; иметь последовательное, супротивное или мутовчатое расположение (рис. 11). Спорангии бывают сферической или неправильной формы (рис. 12), в них формируются эндогенные споры.

Существует немало бактерий, которые могут размножаться несколькими способами. Например, представители рода Rhizobiuт размножаются делением и почкованием, актиномицеты - спорами и кусочками вегетативного мицелия. Нитчатые цианобактерии размножаются гонидиями или гормогониями, а также путем распада трихома на отдельные участки, бактерии рода Chloroflexus - бинарным делением и участками нити. Caryophanon и Sphaerotilus - с помощью гонидий и поперечным изоморфным делением трихома, Leucothrix гонидиями и гормогониями. У микоплазм можно наблюдать бинарное деление, фрагментацию нитей и крупных клеток до кокков, а также процесс, напоминающий почкование.

Рисунок 11 Форма воздушных спороносцев у актиномицетов


Рисунок 12. Спорангии актиномицетов: 1 - Actinoplanes; 2 - Amorphosporangium; 3 - Spirillospora

Многие бактерии неподвижны. Неподвижными являются почти все кокки, более 50% палочковидных бактерий, почкующиеся и ветвящиеся бактерии, значительная часть нитчатых форм, риккетсии, микоплазмы. Способностью к движению обладает примерно 1/5 часть бактерий. Подвижность большинства из них обусловлена наличием специальных локомоторных структур - жгутиков. Жгутики обнаруживаютсяу некоторых кокков (отдельные представители рода Methylococcus ), ряда палочковидных бактерий (виды Bacillus , Clostridiuт , Pseudoтoпas , Rhizobium , Azotobacter , Escherichia и др.), у вибрионов и спирилл, у нитчатых бактерий рода Caryophanon . У бактерий некоторых групп специальные репродуктивные клетки со жгутиками появляются только в определенной стадии развития. Это подвижные клетки каулобактерий, гонидии большинства нитчатых организмов, споры (конидии) некоторых актиномицетов (виды Actinoplaпes и Geoderтatopftilus ).

Рисунок 13. Типы жгутикования у бактерий: 1 - монотрихиальное; 2 - лофотрихиальное; 3 - латеральное; 4 - амфитрихиальное; 5 - перитрихиальное; 6 - «смешанное» полярно - перитрихиальное

Жгутики берут начало под цитоплазматической мембраной и через поры мембраны и клеточной стенки выходят наружу. У разных бактерий длина жгутиков колеблется от 3 до 20 мкм, толщина - от 10 до 20 им, а их число - от 1 до 100. Жгутики могут быть расположены монополярно, биполярно, вдоль боковой или по всей поверхности клетки (рис. 13). Клетки некоторых бактерий имеют одновременно два разных набора жгутиков: полярные и перитрихиальные, различающиеся по длине и толщине.

Наличие, число, размеры и расположение жгутиков имеют диагностическое значение. Например, виды рода Vibrio снабжены одним полярным жгутиком, у Selenoтonas один жгутик прикрепляется сбоку. Для представителей рода Pseudoтonas характерно монотрихиалыюе или лофотрихиальное монополярное жгутикование, а для спирилл лофотрихиальное моно- и биполярное. Перитрихиальное расположение жгутиков свойственно видам Clostridium, Escherichia, Rhizobium, Саryophanon и др. Нередко в пределах одного рода бактерий обнаруживаются подвижные и неподвижные виды, а у подвижных форм может быть разный тип жгутикования. Так, у подвижных представителей рода Bacillus жгутики расположены латерально или перитрихиально.

Активное движение большинства бактерий, обладающих жгутиками, возможно только в жидкой среде. Однако некоторые бактерии - перитрихи могут передвигаться и по твердому субстрату. К ним относится, например, Proteus vulgaris , который довольно быстро распространяется по поверхности. влажной агаризованной среды, образуя обширный тонкий налет. Движение жгутиконосных бактерий наблюдается преимущественно в молодых культурах. С возрастом клетки постепенно теряют жгутики и становятся неподвижными, хотя и сохраняют жизнеспособность.

К подвижным формам относятся спирохеты, миксобактерии, многие нитчатые цианобактерии и флексибактерии, не имеющие жгутиков.

Они способны передвигаться по твердому или полутвердому субстрату

путем скольжения. Спирохеты могут перемещаться и в жидкой среде

вращательными, легкими волнообразными движениями. Скользящее

движение обусловлено, возможно, неравномерным выделением слизи

через поры клеточной стенки. Подвижность спирохет и некоторых миксобактерий (виды Myxococcus ) связывают также с сокращением аксиальных микрофибрилл, расположенных под клеточной стенкой (у спирохет) или под цитоплазматической мембраной (у миксобактерий).

К покоящимся формам бактерий относятся эндоспоры, цисты, акинеты. Они позволяют клетке более или менее длительное время переносить неблагоприятные условия. В условиях, подходящих для роста, покоящиеся формы развиваются в обычную вегетативную клетку.

Эндоспоры. Способностью образовывать эндоспоры обладают палочковидные бактерии, относящиеся к родам Bacillus, Clostridiuт и

Desulfotoтaculuт, а также некоторые кокки (род Sporosarcina) и термофильные актиномицеты рода Therтoactinoтyces. Спорообразование представляет собой сложный процесс дифференцировки, начинающийся в культуре, когда она переходит в стационарную фазу роста и когда создаются условия, индуцирующие его. Эти условия весьма разнообразны: дефицит питательных веществ в среде, накопление продуктов метаболизма, изменение кислотности среды, температуры и др. В результате внутри вегетативной клетки образуется новая клетка - эндоспора, полностью отличающаяся от материнской по структуре, химическому составу и физиологическим свойствам. Эндоспоры одеты толстыми многослойными труднопроницаемыми покровами и имеют очень низкое содержание воды, поэтому при микроскопическом исследовании их легко узнать по высокой светопреломляющей способности.

Форма клеток многих бактерий в процессе спорообразования не меняется. Эндоспора локализуется в центре клетки, эксцентрально или (и) терминально, что зависит от вида бактерий. Это так называемый бациллярный тип спорообразования (рис. 14, 1 ). У ряда бактерий середина клетки при формировании споры несколько расширяется, и клетка приобретает вид челнока или веретена. Спора располагается в утолщенной части - в центре клетки или эксцентрально (рис. 14, 2 ). Это - клостридиальный тип спорообразования. У некоторых бактерий клетка при спорообразовании сильно расширяется и округляется на одном конце, становясь похожей на барабанную палочку. Спора локализуется в расширенном конце (рис. 14, 3 ). Такой тип спорообразования называется плектридиальным. Бациллярный тип спорообразования свойствен многим представителям рода Bacillus, клостридиальный и плектридиальный - в основном видам рода Clostridiuт. Нередко в культуре одного вида этого рода встречаются одновременно и клостридиальные и плектридиальные формы.

Рисунок 14. Типы образования эндоспор у бактерий: 1 - бациллярный; 2 - клостридиальный; 3 - плектридиальный

Эндоспоры бывают округлой, овальной или эллипсовидной формы. Их оболочка может быть гладкой или с выростами. Диаметр эндоспор ряда бактерий значительно превышает поперечник клетки. Тип спорообразования, а также форма, размеры и расположение эндоспоры в вегетативной клетке используются для диагностики бактерий.

В каждой вегетативной клетке формируется, как правило, только одна эндоспора. После созревания эндоспоры освобождаются вследствие лизиса материнских клеток и переходят в стадию покоя. Эндоспоры чрезвычайно устойчивы к различным неблагоприятным факторам и могут сохранять жизнеспособность в течение многих лет, пока не попадут в условия, способствующие их прорастанию.

Спорообразование - не обязательная стадия развития бактерий. Можно создать такие условия, в которых клетки не будут переходить к формированию спор.

Цисты обнаруживаются у миксобактерий, риккетсий, представителей родов Azotobacter , Bdellovibrio , Arthrobacter . Их образование происходит обычно на поздних стадиях развития бактерий и связано с неблагоприятными условиями культивирования - исчерпанием питательного субстрата, загрязнением среды вредными продуктами обмена, высушиванием и т. д. Цисты можно увидеть только в старых культурах.

Цисты бывают сферическими, овальными, неправильно округлыми или в виде сильно укороченных палочек. Чаще всего они крупнее вегетативных клеток. Иногда же по форме и размерам цисты почти не отличаются от них. У большинства бактерий цисты имеют утолщенную клеточную стенку и уплотненную цитоплазму, поэтому они сильнее преломляют свет, чем вегетативные клетки. Цисты устойчивее вегетативных клеток к неблагоприятным факторам, но уступают в этом эндоспорам.

Акинеты свойственны определенным видам нитчатых цианобактерий. Это крупные толстостенные клетки (рис. 15), возникающие либо из одной вегетативной клетки, либо путем слияния многих клеток. У некоторых цианобактерий акинеты обнаруживаются всегда и являются, вероятно, обязательной стадией развития, у других они образуются только в неблагоприятных условиях.

Рисунок 15. Акинеты (а) и гетероцисты (Г) нитчатой цианобактерии Cylindrospermum

Клетки всех бактерий, за исключением микоплазм, покрыты снаружи клеточной стенкой, толщина которой у разных видов колеблется в пределах 0,01-0,04 мкм. В соответствии с различиями в химическом составе клеточных стенок и их ультраструктуре, выражающимися в неодинаковой способности клеточных стенок удерживать красители трифенилметанового ряда с йодом, прокариотные микроорганизмы делятся на две группы. К одной относятся бактерии, в клетках которых комплекс, образуемый кристаллическим или генциановым фиолетовым и йодом, не обесцвечивается при последующей обработке спиртом. К другой группе принадлежат бактерии, не обладающие свойством удерживать краситель и обесцвечивающиеся при обработке спиртом. Этот способ дифференциальной окраски бактерий был предложен в 1884 году датским физиком Христианом Грамом. Бактерии, которые способны окрашиваться по Граму, называются грамположительными, а не способные окрашиватьсся - грамотрицательными. К первой группе относится большинство кокковых форм, спорообразующие палочковидные бактерии родов Bacillus и Clostridium , нитчатые бактерии Сагуорhanon , ветвящиеся бактерии. Ко второй приyадлежат различные палочковидные бактерии, не образующие эндоспор (роды Pseudoтonas , Escherichia и др.), простекобактерии, миксобактерии, риккетсии, многие нитчатые формы, спириллы, спирохеты, некоторые кокки и др. Химический состав и строение клеточных стенок грамотрицательных микроорганизмов значительно сложнее, чем грамположительных.

С особенностями химического состава клеточных стенок связывают и кислотоустойчивость микобактерий. Она выражается в способности клеток, фиксированных и окрашенных при подогревании карболовым фуксином, прочно удерживать окраску после обработки раствором минеральной кислоты или подкисленным спиртом.

Определенными способами, например, под действием лизоцима, бактериальные клетки могут быть лишены клеточных стенок. В таком виде они способны существовать только в изотонической питательной среде.

Клеточная стенка многих бактерий снаружи может быть окружена слизистым слоем - капсулой. Капсулы бывают полисахаридной, иногда гликопротеидной или полипептидной природы. Капсулы толщиной менее 0,2 мкм, неразличимые в световом микроскопе, называют микрокапсулами. Капсула и клеточная стенка являются поверхностными структурами бактериальной клетки, к которым относят также жгутики и обнаруживаемые у многих подвижных и неподвижных бактерий ворсинки (фимбрии, пили). Ворсинки короче и тоньше большинства жгутиков - их длина 3-4 мкм, диаметр 4-35 нм. Число ворсинок у разных бактерий бывает от нескольких единиц до многих тысяч. К подвижности бактерий они, по-видимому, не имеют отношения. Капсулы и ворсинки не являются необходимыми клеточными структурами. Бактерии нормально функционируют и без них.

Обязательной структурой любой клетки является цитоплазматическая мембрана, которая отделяет цитоплазму от клеточной стенки. Толщина мембраны. 5-10 нм. При нарушении ее целостности клетки утрачивают жизнеспособность. Цитоплазма ряда бактерий пронизана мембранными структурами, которые являются производными цитоплазматической мембраны. У гетеротрофных бактерий их называют мезосомами. Они имеют вид пластинок (ламелл), пузырьков (везикул) или трубочек. Мезосомы могут быть расположены в зоне клеточного деления, вблизи нуклеотида и на периферии клетки, недалеко от цитоплазматической мембраны. У грамположительных бактерий мезосомальные структуры развиты в большей степени, чем у грамотрицательных. У фототрофных бактерий мембранные образования в виде пузырьков называют хроматофорами, а уплощенной формы - тилакоидами. Есть бактерии, у которых мембранная система не обнаруживается.

Определенную область в цитоплазме бактериальной клетки занимает нуклеоид. Он состоит из одной двойной спирально закрученной нити ДНК, замкнутой в кольцо. Ядерный аппарат прокариот не имеет ядрышка и не отделен от цитоплазмы мембраной. Через мезосомы нуклеоид связан с цитоплазматической мембраной. В период интенсивного деления в клетках ряда бактерий (Escherichia соli , Oscillatoria атоеnа ) можно обнаружить несколько нуклеоидов.

В цитоплазме бактерий в свободном виде или в связи с мембранными структурами находятся рибосомы. Они имеют константу седиментации 70S, их размеры колеблются в пределах от 15 до 30 нм. Число рибосом может быть от 5 до 50 тыс., что зависит от возраста клетки и условий культивирования. Рибосом больше в молодых клетках.

В клетках различных бактерий часто обнаруживаются включения

запасных веществ. Это полисахариды, липиды, полифосфаты, сера. Они накапливаются при избытке тех или иных питательных веществ в окружающей среде, а расходуются при голодании. Из резервных полисахаридов особенно распространены глюканы: гликоген, крахмал и крахмалоподобное вещество - гранулёза. Они выявляются в клетках спорообразующих бактерий родов Bacillus и Сlоstгidium , а также у пурпурных бактерий и др. Полисахариды откладываются в цитоплазме равномерно или в виде гранул. Запасные липиды 6актерий представлены полиэфиром - оксимасляной кислоты и восками. Полиоксибутират накапливается на средах с избытком углерода у многих

бактерий: видов Bacillus , Pseudoтanas, Spirilluт , Azotobacter , Sphaerotilus и др. Он обнаружен только у прокариот. Воска - эфиры высокомолекулярных жирных кислот и спиртов характерны для микобактерий. Полисахариды и липиды служат хорошим источником углерода и энергии для клетки.

В условиях, препятствующих синтезу нуклеиновых кислот, у многих бактерий создается резерв фосфора в виде гранул полифосфатов. Впервые они были описаны у Spirillит volutans , поэтому их назвали волютином. Эти образования называют также метахроматиновыми зернами, так как они проявляют метахроматический эффект: приобретают красную окраску при обработке синим красителем.

Отдельные виды спорообразующих бактерий (Bacillus thuringiensis , Bacillus cereus , Bacillus popilliae и др.) в определенных условиях образуют в клетках кристаллы белковой природы, которые имеют правильную бипирамидальную форму и расположены непосредственно около споры. Их называют параспоральными тельцами.

Некоторые бактериальные структуры и включения, сильно преломляющие свет (эндоспоры, аэросомы, отложения полиоксибутирата и серы), хорошо заметны в световом микроскопе без специальной обработки. Часть структур (жгутики, клеточная стенка, нуклеоид, волютин и др.) можно выявить с помощью светооптического микроскопа только после окрашивания соответствующими красителями. Ряд структурных элементов бактерий - микрокапсулы, ворсинки, мезосомы, рибосомы и др. различимы только в электронном микроскопе (рис.16).

Рисунок 16. Схема строения бактериальной клетки: 1 - рибосомы, 2 - начавшееся образование поперечной перегородки, 3 и 4 - запасные отложения, 5 - ядерный район, 6 - капсула, 7 - стенки клетки, 8 - протоплазматическая мембрана, 9 - зерно, от которого начинается жгутик

Лекция № 5 Морфология и систематика микроорганизмов. Прокариоты (бактерии и актиномицеты).

1 Морфология и систематика микроорганизмов. Морфология микроорганизмов изучает их внешний вид, форму и особенности строения, способность к движению, спорообразованию, способы размножения. Морфологические признаки играют большую роль в распознавании и классификации микроорганизмов. С древнейших времен живой мир делили на два царства: царство растений и царство животных. Когда был открыт мир микроорганизмов, то их выделили в отдельное царство. Таким образом, до Х1Х века весь мир живых организмов делили на три царства. В начале в основу классификации микроорганизмов были положены морфологические признаки, так как больше о них человек ничего не знал. К концу Х1Х века было описано много видов; разные ученые, в основном ботаники, делили микроорганизмы на группы, принятые для классификации растений. В 1897 году для систематики микробов стали использовать, наряду с морфологическими, и физиологические признаки. Как выяснилось впоследствии, для научно обоснованной классификации одних каких-либо признаков бывает недостаточно. Поэтому используют комплекс признаков:

Морфологические (форма клеток, размеры, подвижность, размножение, спорообразование, окраска по Граму);

Культуральные (характер роста на жидких и плотных питательных средах);

Физиолого-биохимические (характер накапливаемых продуктов);

Генотипические (физико-химические свойства ДНК).

Геносистематика позволяет определить вид микроорганизмов не по сходству, а по родству. Установлено, что нуклеотидный состав суммарной ДНК в процессе развития микроорганизмов в разных условиях не изменяется. Идентичны по составу ДНК S- и R-формы. Обнаружены и такие микроорганизмы, которые имеют сходный нуклеотидный состав ДНК, хотя и относятся к разным систематическим группам: кишечные палочки и некоторые коринебактерии. Это указывает на то, что при систематике (таксономии) микробов следует учитывать разные признаки.

До недавнего времени все живые существа клеточного строения в зависимости от взаимоотношения ядра и органелл с цитоплазмой, состава клеточной стенки и других признаков делили на две группы (царства):

1.1 Прокариоты-доядерные (отнесены – организмы, не имеющие четко выраженного ядра, представленного молекулой ДНК в форме кольца; в состав клеточной стенки входит пептидогликан (муреин) и тейхоевые кислоты; рибосомы имеют константы седиментации 70; энергетические центры клетки находятся в мезосомах и отсутствуют органеллы).

1.2 Эукариоты-ядерные (с четко выраженным ядром, отделенным от цитоплазмы оболочкой; в клеточной стенке отсутствует пептидогликан и тейхоевые кислоты; рибосомы цитоплазмы крупнее; константа седиментации 80; энергетические процессы осуществляются в митохондриях; из органелл имеется комплекс Гольджи и др.).

В дальнейшем оказалось, что среди микроорганизмов есть и неклеточные формы-вирусы и поэтому выделили третье группу (царство) - вира.

Для обозначения микроорганизмов принята двойная (бинарная) номенклатура, которая включает в себя название рода и вида. Родовое название пишется с прописной буквы (заглавной), видовое (даже происходящее от фамилии)- со строчной (маленькой). Например, бациллу сибирской язвы называют Bacillus anthracis, кишечную палочку- Escherichia coli, аспергилл черный-Aspergillus niger.

Основной (низшей) таксономической единицей является вид. Виды объединяются в роды, роды - в семейства, семейства -в порядки, порядки - в классы, классы - в отделы, отделы - в царства.

Вид- это совокупность особей одного генотипа с явно выраженным фенотипическим сходством.

Культура - микроорганизмы, полученные от животного, человека, растения или субстрата внешней среды и выращенные на питательной среде. Чистые культуры состоят из особей одного вида (потомство, полученное из одной клетки - клон).

Штамм- культура одного и того же вида, выделенная из различных сред обитания и отличающиеся незначительными изменениями свойств. Например, кишечная палочка, выделенная из организма человека, крупного рогатого скота, водоемов, почвы, могут быть разными штаммами.

2 Прокариоты (бактерии и актиномицеты). Бактерии (прокариоты)-это большая группа микроорганизмов (около 1600 видов), большинство из которых одноклеточные. Форма и размеры бактерий. Основные формы бактерий: шаровидная, палочковидная и извитая. Шаровидные бактерии - кокки имеют обычную форму шара, встречаются уплощенные, овальной или бобовидной формы. Кокки могут быть в виде клеток одиночных - монококки (микрококки) или соединенных в различных сочетаниях: попарно - диплококки, по четыре клетки - тетракокки, в виде более или менее длинных цепочек - стрептококки, а также в виде скоплений кубической формы (в виде пакетов) из восьми клеток, расположенных в два яруса один над другим, - сарцины. Встречаются скопления неправильной формы, напоминающие грозди винограда, - стафилококки. Палочковидные бактерии могут быть одиночными или соединенными попарно - диплобактерии, цепочками по три-четыре и более клеток - стрептобактерии. Соотношения между длиной и толщиной палочек бывают самыми различными. Извитые, или изогнутые, бактерии различаются длиной, толщиной и степенью изогнутости. Палочки, слегка изогнутые в виде запятой, называют вибрионами, палочки с одним или несколькими завитками в виде штопора - спириллами, а тонкие палочки с многочисленными завитками - спирохетами. Благодаря использованию электронного микроскопа для изучения микроорганизмов в естественных природных субстратах были обнаружены бактерии, имеющие особую форму клеток: замкнутого или разомкнутого кольца (тороиды); с выростами (простеками); червеобразной формы - длинные с загнутыми очень тонкими концами; а также в виде шестиугольной звезды.

Размеры бактерий очень малы: от десятых долей микрометра (мкм) до нескольких микрометров. В среднем размер тела большинства бактерий 0,5-1 мкм, а средняя длина палочковидных бактерий - 2-5 мкм. Встречаются бак­терии, размеры которых значительно превышают среднюю величину, а некоторые находятся на грани видимости в обычных оптических микроскопах. Форма тела бактерий, как и их размеры, может изменяться в зависимости от возраста и условий роста. Однако при определенных, относительно стабильных условиях бактерии сохраняют присущие данному виду размеры и форму. Масса бактериальной клетки очень мала, приблизительно 4- 10- 1:! г.

Строение бактериальной клетки . Клетка прокариотных организмов, к которым относятся бактерии, обладает принципиальными особенностями ультраструктуры. Клеточная стенка (оболочка) - важный структурный элемент большинства бактерий. На долю клеточной стенки приходится от 5 до 20% сухих веществ клетки. Она обладает эластичностью, служит механическим барьером между протопластом и окружающей средой, придает клетке определенную форму. В состав клеточной стенки входит специфическое для прокариотных клеток гетерополимерное соединение - пептидогликан (муреин), отсутству­ющий в клеточных стенках эукариотных организмов. По методу окраски, предложенному датским физиком X. Грамом (1884 г.), бактерии делятся на две группы: грамположительные и грамотрицателъные. Грамположительные клетки удерживают краску, а грамотрицателъные не удерживают ее, что обусловлено различиями в химическом составе и ультраструктуре их клеточных стенок. У грамположительных бактерий клеточные стенки более толстые, аморфные, в них содержится большое количество муреина (от 50 до 90% сухой массы клеточной стенки) и тейхоевые кис­лоты. Клеточные стенки грамотрицательных бактерий более тонкие, слоистые, в них содержится много липидов, мало муреина (5-10%) и отсутствуют тейхоевые кислоты.

Клеточная стенка бактерий часто бывает покрыта слизью. Слизистый слой может быть тонким, едва различимым, но может быть и значительным, может образовывать капсулу. Нередко по размеру капсула намного превышает бактериальную клетку. Ослизнение клеточных стенок иногда бывает настолько сильным, что капсулы отдельных клеток сливаются в слизистые массы (зоогели), в которые вкраплены бактериальные клетки. Образуемые некоторыми бактериями слизистые вещества не удерживаются в виде компактной массы вокруг клеточной стенки, а диффундируют в окружающую среду. При быстром размножении в жидких субстратах слизеобразующие бактерии могут превратить их в сплошную слизистую массу. Такое явление наблюдается иногда в сахаристых экстрактах из свеклы при производстве сахара. За короткое время сахарный сироп может превратиться в тягучую слизистую массу. Ослизнению подвергаются мясо, колбасы, творог; наблюдается тягучесть молока, рассолов, квашеных овощей, пива, вина. Интенсивность слизеобразования и химический состав слизи зависят от вида бактерий и условий культивирования. Капсула обладает полезными свойствами, слизь предохраняет клетки от неблагоприятных условий - у многих бактерий в таких условиях усиливается слизеобразование. Капсула защищает клетку от механических повреждений и высыхания, создает дополнительный осмотический барьер, служит препятствием для проникновения фагов, антител, иногда она является источником запасных питательных ве­ществ. Цитоплазматическая мембрана отделяет от клеточной стенки содержимое клетки. Это обязательная структура любой клетки. При нарушении целостности цитоплазматической мембраны клетка теряет жизнеспособность. На долю цитоплазматической мембраны приходится 8-15% сухого вещества клетки. В мембране содержится до 70-90% липидов клетки, толщина ее 7-10 нм 1 . На срезах клеток в электронном микроскопе она видна в виде трехслойной струк­туры - одного липидного слоя и двух примыкающих к нему с обеих сторон белковых слоев. Цитоплазматическая мембрана местами впячивается внутрь клетки, образуя всевозможные мембранные структуры. В ней находятся различ­ные ферменты; она полупроницаема, играет важную роль в обмене веществ между клеткой и окружающей средой. Цитоплазма бактериальной клетки представляет собой полужидкую, вязкую, коллоидную систему. Местами она пронизана мембранными структурами - мезосомами, которые произошли от цитоплазматической мембраны и сохранили с ней связь. Мезосомы выполняют различные функции; в них и в связанной с ними цитоплазматической мембране имеются ферменты, участвующие в энергетических процессах - в снабжении клетки энергией. Хорошо развитые мезосомы обнаружены только у грамположительных бактерий, у грамотрицательных они развиты слабо и имеют более простое строение. В цитоплазме содержатся рибосомы, ядерный аппарат и различные включения. Рибосомы рассеяны в цитоплазме в виде гранул размером 20-30 нм; рибосомы состоят примерно на 60% из рибонуклеиновой кислоты (РНК) и на 40% из белка. Рибосомы ответственны за синтез белка клетки. В бактериальной клетке в зависимости от ее возраста и условий жизни может или быть 5-50 тыс. рибосом. Ядерный аппарат бактерий называют нуклеоидом. Электронная микроскопия ультратонких срезов клетки бактерий позволила установить, что носителем генетической информации клетки является молекула дезоксирибонуклеиновой кислоты (ДНК). ДНК имеет форму двойной спиральной нити, замкнутой в кольцо; ее еще называют "бактериальная хромосома". Она расположена в определенном участке цитоплазмы, но не отделена от нее собственной мембраной.

Цитоплазматические включения бактериальной клетки разнообразны, в основном это запасные питательные вещества, которые откладываются в клетках, когда они развиваются в условиях избытка питательных веществ в среде, и потребляются, когда клетки попадают в условия голодания. В клетках бактерий откладываются полисахариды: гликоген, крахмалоподобное вещество гранулеза, которые используются в качестве источника углерода и энергии. Липиды обнаруживаются в клетках в виде гранул и капелек. Жир служит хорошим источником углерода и энергии. У многих бактерий накапливаются полифосфаты; они содержатся в волютиновых гранулах и используются клетками как источник фосфора и энергии. В клетках серных бактерий откладывается молекулярная сера.

Подвижность бактерий . Шаровидные бактерии, как правило, неподвижны. Палочковидные бактерии бывают как подвижные, так и неподвижные. Изогнутые и спиралевидные бактерии подвижны. Некоторые бактерии перемещаются путем скольжения. Движение большинства бактерий осуществляется с помощью жгутиков. Жгутики - это тонкие, спирально закрученные нити белковой природы, которые могут осуществлять вращательные движения. Длина жгутиков различна, а толщина так мала (10-20 нм), что в световой микроскоп их можно увидеть только после специальной обработки клетки. Наличие, число и расположение жгутиков - постоянные для вида признаки и имеют диагностическое значение. Бактерии с одним жгутиком на конце клетки получили название монотрихов; с пучком жгутиков - лофотрихов", с пучком жгутиков на обоих концах клетки - амфитрихов; бактерии, у которых жгутики находятся на всей поверхности клетки, называются перитрихами. Скорость передвижения бактерий велика: за секунду клетка со жгутиками может пройти расстояние в 20-50 раз больше, чем длина ее тела. При неблагоприятных условиях жизни, при старении клетки, при механическом воздействии подвижность может быть утрачена. Кроме жгутиков, на поверхности некоторых бактерий имеются в большом количестве нитевидные образования, значительно тоньше и короче, чем жгутики - фимбрии (или пили).

Размножение бактерий. Для прокариотных клеток характерно простое деление клетки надвое. Деление клетки начинается, как правило, спустя некоторое время после деления нуклеоида. Палочковидные бактерии делятся попе­рек, шаровидные формы в разных плоскостях. В зависимости от ориентации плоскости деления и их числа возникают различные формы: одиночные кокки, парные, цепочки, в виде пакетов, гроздьев. Особенностью размножения бактерий является быстрота протекания процесса. Скорость деления зависит от вида бактерий, условий культивирования: некоторые виды делятся через каждые 15-20 мин, другие - через 5-10 ч. При таком делении число клеток бактерий за сутки достигает огромного количества. Это часто наблюдается на пищевых продуктах: быстрое скисание молока вследствие развития молочно-кислых бактерий, быстрая порча мяса и рыбы за счет развития гнилостных бактерий и т.д.

Спорообразование. Споры у бактерий образуются обычно при неблагоприятных условиях развития: при недостатке питательных веществ, изменении температуры, рН, при накоплении продуктов обмена выше определенного уровня. Способностью образовывать споры обладают в основном па­лочковидные бактерии. В каждой клетке образуется только одна спора (эндоспора).

Спорообразование - сложный процесс, в нем различают несколько стадий: сначала наблюдается перестройка генетического аппарата клетки, изменяются морфология нуклеоида. В клетке прекращается синтез ДНК. Ядерная ДНК вытягивается в виде нити, которая затем разделяется; часть ее концентрируется у одного из полюсов клетки. Эта часть клетки называется спорогенной зоной. В спорогенной зоне происходит уплотнение цитоплазмы, затем этот участок обособляется от остального клеточного содержимого перегородкой (септой). Отсеченный участок покрывается мембраной материнской клетки, образуется так называемая проспора. Проспора - это структура, располагающаяся внутри материнской клетки, от которой она отделена двумя мембранами: наружной и внутренней. Между мембранами формируется кортикальный слой (кортекс), сходный по химическому составу с клеточной стенкой вегетативной клетки. Помимо пептидогликана, в кортексе содержится дипиколиновая кислота (С 7 Н 8 О 4 Мg), которая отсутствует в вегетативных клетках. В дальнейшем по­верх проспоры образуется оболочка споры, состоящая из нескольких слоев. Число, толщина и строение слоев различны у разных видов бактерий. Поверхность наружной оболочки может быть гладкой либо с выростами разной длины и формы. Поверх оболочки споры нередко образуется еще тонкий покров, окружающий спору в виде чехла, - экзоспориум.

Споры имеют обычно круглую или овальную форму. Диаметр спор некоторых бактерий превышает ширину клетки, вследствие чего форма спороносящих клеток, изменяется. Клетка приобретает форму веретена (клостридиум ) , если спора расположена в ее центре, или форму барабанной палочки (плектридиум) , когда спора приближена к концу клетки.

После созревания споры материнская клетка отмирает, оболочка ее разрушается, и спора освобождается. Процесс образования споры протекает в течение нескольких часов.

Наличие у бактериальных спор плотной, труднопроницаемой оболочки, малое содержание в ней воды, большое количество липидов, а также наличие кальция и дипиколиновой кислоты обусловливают высокую устойчивость спор к факторам внешней среды. Споры могут находиться в жизнеспособном состоянии сотни и даже тысячи лет. Например, жизнеспособные споры выделены из трупов мамонтов и египетских мумий, возраст которых исчисляется тысячелетиями. Споры устойчивы к высокой температуре: в сухом состоянии они погибают после прогревания при 165-170°С в течение 1,5-2 ч, а при перегретом паре (в автоклаве) -- при 121°С в течение 15-30 мин.

В благоприятных условиях спора прорастает в вегетативную клетку; этот процесс обычно длится несколько часов.

Прорастающая спора начинает активно поглощать воду, активизируются ее ферменты, усиливаются биохимические процессы, приводящие к росту. Кортекс при прорастании споры превращается в клеточную стенку молодой вегетативной клетки; освобождаются во внешнюю среду дипиколиновая кислота и кальций. Внешняя оболочка споры разрывается, через разрывы выходит наружу "росток" новой клетки, из которого затем формируется вегетативная бактериальная клетка.

Порчу пищевых продуктов вызывают лишь вегетативные клетки. Знание факторов, способствующих образованию спор у бактерий, и факторов, которые вызывают их прорастание в вегетативные клетки, имеет значение в выборе способа обработки продуктов с целью предотвращения их микробной порчи.

Изложенные выше сведения характеризуют в основном так называемые истинные бактерии. Существуют и другие, более или менее отличающиеся от них, к которым относятся следующие.

Нитчатые (нитевидные бактерии). Это многоклеточные организмы в виде нитей различной длины, диаметром от 1 до 7 мкм, подвижных или прикрепленных к субстрату. В основном нити со слизистым чехлом. Они могут содержать окись магния или окислы железа. Живут в водоемах, встречаются в почве.

Миксобактерии. Это палочковидные бактерии, передвигаются путем скольжения. Они образуют плодовые тела - скопления клеток, заключенных в слизь. Клетки в плодовых телах переходят в покоящееся состояние - миксоспоры. Эти бактерии живут в почве, на различных растительных остатках.

Почкующиеся и стебельковые бактерии размножаются почкованием, образуют стебельки или то и другое вместе. Есть виды с выростами - простеками. Живут в почве и водоемах.

Актиномицеты. Бактерии имеют ветвистую форму. Одни - палочки слегка разветвленные (см. рис. 2, д), другие - в виде тонких ветвящихся нитей, образующих одноклеточный мицелий. Мицелиальные актиномицеты, называ­емые "лучистые грибки", размножаются спорами, развивающимися на воздушных ветвях мицелия. Актиномицеты бывают окрашены; они широко распространены в природе. Встречаются и на пищевых продуктах и могут вызвать их порчу. Продукт приобретает характерный землистый запах. Многие актиномицеты продуцируют антибиотики. Есть виды, патогенные для человека и животных.

Микоплазмы. Организмы без клеточной стенки, покрыты лишь трехслойной мембраной. Клетки очень мелкие, иногда ультрамикроскопических размеров (около 200 нм), плеоморфные (разнообразной формы) - от кокковидных до нитевидных. Некоторые вызывают заболевания человека, животных, растений.

Основы систематики бактерий Современные системы классификации бактерий по существу являются искусственными, объединяют бактерии в определенные группы на основе сходства их по комплексу морфологических, физиологических, биохимических и генотипических признаков.В этих целях используется руководство Берги по определению бактерий (1974 год, 8-е издание и 1984 г.- 9-е издание). По 8-му изданию все прокариоты делят на два отдела - цианобактерии и бактерии. Первый отдел - цианобактерии (синезеленые водоросли) - это фототрофные микроорганизмы. Второй отдел - бактерии. Этот отдел разделен на 19 групп. К 17-ой группе относят актиномицеты. По 9-му изданию царство прокариот подразделено на четыре отдела в зависимости от наличия или отсутствия клеточной стенки и ее химического состава: в первый отдел - тонкокожие, включены группы бактерий, грамотрицательные, фототрофные и цианобактерии; во 2-ой отдел - твердокожие, включены группы бактерий, относящиеся к окраске по Граму положительно; в третий отдел включены микоплазмы- бактерии, не имеющие клеточной стенки; в четвертый отдел включены метанобразующие и архебактерии(особая группа бактерий, обитающая в экстремальных условиях внешней среды и являющиеся одной из древнейших форм жизни).

Публикации по теме