Способы задания функции. Функции и графики Три способа задания функции

Задать функцию означает указать пpавило, котоpое позволяет находить по каждому значению аpгумента соответствующее ему значение функции. Существуют тpи основных способа задания функций: аналитический, табличный и графический.

Аналитический способ задания функции

состоит в том, что соответствие между и задается посpедством фоpмул, напpимеp,

Табличный способ задания функции

Функцию можно задать с помощью таблиц, в котоpых указаны некотоpые значения пеpеменной и соответствующие им значения пеpеменной . Эти таблицы могут быть получены как непосpедственно из опыта, так и с помощью тех или иных математических pасчетов.

Графический способ задания функции

В пpактике физических измеpений используется еще один способ задания функций — гpафический, пpи котоpом соответствие между независимой и зависимой пеpеменными задается посpедством гpафика, снимаемого, как пpавило, специальными пpибоpами.

Неявное задание функции

Рассмотрение еще одного способа задания функции — так называемого неявного задания функции, связано с понятием уравнения с двумя переменными.

Рассмотрим уравнение

Пусть существует такое множество , что для любого существует по крайней мере одно число , удовлетворяющее уравнению .

Обозначим одно из этих чисел через и поставим его в соответствие числу . В результате получим функцию , определенную на множестве и такую, что

В таком случае говорят, что функция задается уравнением неявно. Это уравнение задает, вообще говоря, не одну, а некоторое множество функций.

Итак, функция называется неявной, если она задана посредством уравнения с двумя переменными, неразрешенного относительно . В отличие от нее явной называется функция, заданная уравнением с двумя переменными, разрешенным относительно .

Термин «неявная функция» отражает не характер функциональной зависимости, а лишь способ ее задания. Одна и та же функция может быть задана как явно, так и неявно. Например, функции

Задать функцию означает установить правило (закон) с помощью которого по данным значениям независимой переменной находим соответствующие им значения функции. Рассмотрим различные способы задания функции.

Эта запись определяет температуру Т как функцию от времени t:T=f(t). Преимущества табличного способа задания функции состоят в том, что он дает возможность определить те или другие конкретные значения функции сразу, без дополнительных изменений или вычислений. Недостатки: определяет функцию не полностью, а лишь для некоторых значений аргумента; не дает наглядного изображения характера изменения функции с изменением аргумента.

2. Графический способ. Графиком функцииy=f(x) называется множество всех точек плоскости, координаты которых удовлетворяют данному уравнению. Это может быть некоторая кривая, в частности прямая, множество точек на плоскости.

Преимущество – наглядность, недостаток – нет возможности точно определить значения аргумента. В технике и физике часто он является единственно доступным способом задания функции, например, при пользовании самопишущими приборами, которые автоматически записывают изменение одной величины относительно другой (барограф, термограф и др.).

3. Аналитический способ. По этому способу функция задается аналитически, с помощью формулы. Такой способ дает возможность по каждому численному значению аргумента х найти соответствующее ему численное значение функции у точно или с некоторой точностью.

При аналитическом способе функция может быть задана и несколькими разными формулами. Например, функция

задана в области определения [-, 15] с помощью трех формул.

Если зависимость между х и у задана формулой, разрешенной относительно у, т.е. имеет вид у = f(x) , то говорят, что функция от х задана в явном виде, например,. Если же значения х и у связаны некоторым уравнением видаF(x,y) = 0, т.е. формула не разрешена относительно у, то говорят, что функция задана неявно. Например,. Заметим, что не всякую неявную функцию можно представить в виде у =f(x), наоборот, любую явную функцию всегда можно представить в виде неявной:
. Еще одна разновидность аналитического задания функции – параметрическое, когда аргумент х и функция у являются функциями третьей величины – параметраt:
, где
, Т – некоторый промежуток. Такой способ широко применяется в механике, в геометрии.

Аналитический способ является самым распространенным способом задания функции. Компактность, возможность применения к данной функции аппарата математического анализа, возможность вычисления значений функции при любых значениях аргумента – его основные преимущества.

4. Словесный способ. Этот способ состоит в том, что функциональная зависимость выражается словами. Например, функция Е(х) – целая часть числа х, функция Дирихле, функция Римана,n!,r(n) – число делителей натурального числаn.

5. Полуграфический способ. Здесь значения функции представляются в виде отрезков, а значения аргумента – в виде чисел, проставленных на концах отрезков, указывающих значения функции. Так, например, в термометре есть шкала с равными делениями, у которых проставлены числа. Эти числа являются значениями аргумента (температуры). Они стоят на том месте, которое определяет графическое удлинение столбца ртути (значения функции) в связи с ее объемным расширением в результате температурных изменений.

Приводятся основные способы задания функций: явный аналитический; интервальный; параметрический; неявный; задание функции с помощью ряда; табличный; графический. Примеры применения этих способов

Содержание

См. также: Определение функции

Существуют следующие способы задания функции y = f(x) :

  1. Явный аналитический способ по формуле вида y = f(x) .
  2. Интервальный.
  3. Параметрический: x = x(t) , y = y(t) .
  4. Неявный, как решение уравнения F(x, y) = 0 .
  5. В виде ряда, составленного из известных функций.
  6. Табличный.
  7. Графический.

Явный аналитический способ задания функции

При явном способе , значение функции определяется по формуле, представляющем собой уравнение y = f(x) . В левой части этого уравнения стоит зависимая переменная y , а в правой - выражение, составленное из независимой переменной x , постоянных, известных функций и операций сложения, вычитания, умножения и деления. Известными функциями являются элементарные функции и специальные функции, значения которых можно вычислить, используя средства вычислительной техники.

Вот несколько примеров явного задания функции с независимой переменной x и зависимой переменной y :
;
;
.

Интервальный способ задания функции

При интервальном способе задания функции , область определения разбивается на несколько интервалов, и функция задается отдельно для каждого интервала.

Вот несколько примеров интервального способа задания функции:


Параметрический способ задания функции

При параметрическом способе , вводится новая переменная, которую называют параметром. Далее задают значения x и y как функции от параметра, используя явный способ задания:
(1)

Вот примеры параметрического способа задания функции, используя параметр t :


Преимущество параметрического способа заключается в том, что одну и ту же функцию можно задать бесконечным числом способов. Например, функцию можно задать так:

А можно и так:

Такая свобода выбора, в некоторых случаях, позволяет применять этот способ для решения уравнений (см. «Дифференциальные уравнения, не содержащие одну из переменных »). Суть применения заключается в том, что мы подставляем в уравнение вместо переменных x и y две функции и . Затем задаем одну из них по собственному усмотрению, чтобы из получившегося уравнения можно было определить другую.

Также этот способ применяется для упрощения расчетов. Например, зависимость координат точек эллипса с полуосями a и b можно представить так:
.
В параметрическом виде этой зависимости можно придать более простую форму:
.

Уравнения (1) - это не единственный способ параметрического задания функции. Можно вводить не один, а несколько параметров, связав их дополнительными уравнениями. Например можно ввести два параметра и . Тогда задание функции будет выглядеть так:

Здесь появляется дополнительное уравнение , связывающее параметры. Если число параметров равно n , то должно быть n - 1 дополнительных уравнений.

Пример применения нескольких параметров изложен на странице «Дифференциальное уравнение Якоби ». Там решение ищется в следующем виде:
(2) .
В результате получается система уравнений. Чтобы ее решить, вводят четвертый параметр t . После решения системы получается три уравнения, связывающие четыре параметра и .

Неявный способ задания функции

При неявном способе , значения функции определяется из решения уравнения .

Например, уравнение эллипса имеет вид:
(3) .
Это простое уравнение. Если мы рассматриваем только верхнюю часть эллипса, , то можно выразить переменную y как функцию от x явным способом:
(4) .
Но даже если можно свести (3) к явному способу задания функции (4), последней формулой не всегда удобно пользоваться. Например, чтобы найти производную , удобно дифференцировать уравнение (3), а не (4):
;
.

Задание функции рядом

Исключительно важным способом задания функции является ее представление в виде ряда , составленного из известных функций. Этот способ позволяет исследовать функцию математическими методами и вычислять ее значения для прикладных задач.

Самым распространенным представлением является задание функции с помощью степенного ряда. При этом используется ряд функций:
.
Также применяется ряд и с отрицательными степенями:
.
Например, функция синус имеет следующее разложение:
(5) .
Подобные разложения широко применяются в вычислительной технике, поскольку они позволяют свести вычисления к арифметическим операциям.

В качестве иллюстрации, вычислим значение синуса от 30°, используя разложение (5).
Переводим градусы в радианы:
.
Подставляем в (5):



.

В математике, на ряду со степенными рядами, широко применяются разложения в тригонометрические ряды по функциям и , а также по другим специальным функциям. С помощью рядов можно производить приближенные вычисления интегралов, уравнений (дифференциальных, интегральных, в частных производных) и исследовать их решения.

Табличный способ задания функции

При табличном способе задания функции мы имеем таблицу, которая содержит значения независимой переменной x и соответствующие им значения зависимой переменной y . Независимая и зависимая переменные могут иметь разные обозначения, но мы здесь используем x и y . Чтобы определить значение функции при заданном значении x , мы по таблице, находим значение x , наиболее близкое к нашему. После этого определяем соответствующее значение зависимой переменной y .

Для более точного определения значения функции, мы считаем, что функция между двумя соседними значениями x линейна, то есть имеет следующий вид:
.
Здесь - значения функции, найденные из таблицы, при соответствующих им значениях аргументов .
Рассмотрим пример. Пусть нам нужно найти значение функции при . Из таблицы находим:
.
Тогда

.
Точное значение:
.
Из этого примера видно, что применение линейной аппроксимации привело к повышению точности в определении значения функции.

Табличный способ применяется в прикладных науках. До развития вычислительной техники, он широко применялся в инженерных и других расчетах. Сейчас табличный способ применяется в статистике и экспериментальных науках для сбора и анализа экспериментальных данных.

Графический способ задания функции

При графическом способе , значение функции определяется из графика, по оси абсцисс которого откладываются значения независимой переменной, а по оси ординат - зависимой.

Графический способ дает наглядное представление о поведении функции. Результаты исследования функции часто иллюстрируют ее графиком. Из графика можно определить приближенное значение функции. Это позволяет использовать графический способ в прикладных и инженерных расчетах.

См. также:

является заданной, иначе говоря, известной, если для каждого значения возможного числа аргументов можно узнать соответствующее значение функции. Наиболее распространенные три способа задания функции : табличный, графический, аналитический, существуют еще словесный и рекурсивный способы.

1. Табличный способ наиболее широко распространен (таблицы логарифмов , квадратных корней), основное его достоинство - возможность получения числового значения функции , недостатки заключаются в том, что таблица может быть трудно читаема и иногда не содержит промежуточных значений аргумента.

Например:

x

y

Аргумент х принимает заданные в таблице значения, а у определяется соответственно этому аргументу х .

2. Графический способ заключается в проведении линии (графика), у которой абсциссы изображают значения аргумента, а ординаты - соответствующие значения функции . Часто для наглядности масштабы на осях принимают разными.

Например: для нахождения по графику у , которому соответствует х = 2,5 необходимо провести перпендикуляр к оси х на отметке 2,5 . Отметку можно довольно точно сделать с помощью линейки. Тогда найдем, что при х = 2,5 у равно 7,5 , однако если нам необходимо найти значение у при х равном 2,76 , то графический способ задания функции не будет достаточно точным, т.к. линейка не дает возможности для столь точного замера.

Достоинства этого способа задания функций заключаются в легкости и целостности восприятия, в непрерывности изменения аргумента; недостатком является уменьшение степени точности и сложность получения точных значений.

3. Аналитический способ состоит в задании функции одной или несколькими формулами. Основным достоинством этого способа является высокая точность определения функции от интересующего аргумента, а недостатком является затрата времени на проведение дополнительных математических операций.

Например:

Функцию можно задать с помощью математической формулы y= x 2 , тогда если х равно 2 , то у равно 4, возводим х в квадрат.

4. Словесный способ состоит в задании функции обычным языком, т.е. словами. При этом необходимо дать входные, выходные значения и соответствие между ними.

Например:

Словесно можно задать функцию (задачу), принимающуюся в виде натурального аргумента х с соответствующим значением суммы цифр, из которых состоит значение у . Поясняем: если х равно 4 , то у равно 4 , а если х равно 358 , то у равен сумме 3 + 5 + 8 , т. е 16 . Далее аналогично.

5. Рекурсивный способ состоит в задании функции через саму себя, при этом значения функции определяются через другие ее же значения. Такой способ задания функции используется в задании множеств и рядов.

Например:

При разложении числа Эйлера задается функцией:

Ее сокращение приведено ниже:

При прямом расчёте возникает бесконечная рекурсия, но можно доказать, что значение f(n) при возрастании n стремится к единице (поэтому, несмотря на бесконечность ряда , значение числа Эйлера конечно). Для приближённого вычисления значения e достаточно искусственно ограничить глубину рекурсии некоторым наперёд заданным числом и по достижении его использовать вместо f(n) единицу.

Аналитическое задание функции

Функция %%y = f(x), x \in X%% задана явным аналитическим способом , если дана формула, указывающая последовательность математических действий, которые надо выполнить с аргументом %%x%%, чтобы получить значение %%f(x)%% этой функции.

Пример

  • %% y = 2 x^2 + 3x + 5, x \in \mathbb{R}%%;
  • %% y = \frac{1}{x - 5}, x \neq 5%%;
  • %% y = \sqrt{x}, x \geq 0%%.

Так, например, в физике при равноускоренном прямолинейном движении скорость тела определяется формулой %%v = v_0 + a t%%, а формула для перемещения %%s%% тела при равномерно ускоренном движении на промежутке времени от %%0%% до %%t%% записывается в виде: %% s = s_0 + v_0 t + \frac{a t^2}{2} %%.

Кусочно-заданные функции

Иногда рассматриваемая функция может быть задана несколькими формулами, действующими на различных участках области ее определения, в которой изменяется аргумент функции. Например: $$ y = \begin{cases} x ^ 2,~ если~x < 0, \\ \sqrt{x},~ если~x \geq 0. \end{cases} $$

Функции такого вида иногда называют составными или кусочно-заданными . Примером такой функции является %%y = |x|%%

Область определения функции

Если функция задана явным аналитическим способом с помощью формулы, но область определения функции в виде множества %%D%% не указана, то под %%D%% будем всегда подразумевать множество значений аргумента %%x%%, при которых данная формула имеет смысл. Так для функции %%y = x^2%% областью определения служит множество %%D = \mathbb{R} = (-\infty, +\infty)%%, поскольку аргумент %%x%% может принимать любые значения на числовой прямой . А для функции %%y = \frac{1}{\sqrt{1 - x^2}}%% областью определения будет множество значений %%x%% удовлетворяющих неравенству %%1 - x^2 > 0%%, т.е. %%D = (-1, 1)%%.

Преимущества явного аналитического задания функции

Отметим, что явный аналитический способ задания функции достаточно компактен (формула, как правило, занимает немного места), легко воспроизводим (формулу нетрудно записать) и наиболее приспособлен к выполнению над функциями математических действий и преобразований.

Некоторые из этих действий - алгебраические (сложение, умножение и др.) - хорошо известны из школьного курса математики, другие (дифференцирование, интегрирование) будем изучать в дальнейшем. Однако этот способ не всегда нагляден, так как не всегда четок характер зависимости функции от аргумента, а для нахождения значений функции (если они необходимы) требуются иногда громоздкие вычисления.

Неявное задание функции

Функция %%y = f(x)%% задана неявным аналитическим способом , если дано соотношение $$F(x,y) = 0, ~~~~~~~~~~(1)$$ связывающее значения функции %%y%% и аргумента %%x%%. Если задавать значения аргумента, то для нахождения значения %%y%%, соответствующего конкретному значению %%x%%, необходимо решить уравнение %%(1)%% относительно %%y%% при этом конкретном значении %%x%%.

При заданном значении %%x%% уравнение %%(1)%% может не иметь решения или иметь более одного решения. В первом случае заданное значение %%x%% не принадлежит области определения неявно заданной функции, а во втором случае задает многозначную функцию , имеющую при данном значении аргумента более одного значения.

Отметим, что если уравнение %%(1)%% удается явно разрешить относительно %%y = f(x)%%, то получаем ту же функцию, но уже заданную явным аналитическим способом. Так, уравнение %%x + y^5 - 1 = 0%%

и равенство %%y = \sqrt{1 - x}%% определяют одну и ту же функцию.

Параметрическое задание функции

Когда зависимость %%y%% от %%x%% не задана непосредственно, а вместо этого даны зависимости обоих переменных %%x%% и %%y%% от некоторой третьей вспомогательной переменной %%t%% в виде

$$ \begin{cases} x = \varphi(t),\\ y = \psi(t), \end{cases} ~~~t \in T \subseteq \mathbb{R}, ~~~~~~~~~~(2) $$то говорят о параметрическом способе задания функции;

тогда вспомогательную переменную %%t%% называют параметром.

Если из уравнений %%(2)%% удается исключить параметр %%t%%, то приходят к функции, заданной явной или неявной аналитической зависимостью %%y%% от %%x%%. Например, из соотношений $$ \begin{cases} x = 2 t + 5, \\ y = 4 t + 12, \end{cases}, ~~~t \in \mathbb{R}, $$ исключением параметра %%t%% получим зависимость %%y = 2 x + 2%%, которая задает в плоскости %%xOy%% прямую.

Графический способ

Пример графического задания функции

Приведенные выше примеры показывают, что аналитическому способу задания функции соответствует ее графическое изображение , которое можно рассматривать как удобную и наглядную форму описания функции. Иногда используют графический способ задания функции, когда зависимость %%y%% от %%x%% задают линией на плоскости %%xOy%%. Однако при всей наглядности он проигрывает в точности, поскольку значения аргумента и соответствующие им значения функции можно получить из графика лишь приближенно. Возникающая при этом погрешность зависит от масштаба и точности измерения абсциссы и ординаты отдельных точек графика. В дальнейшем графику функции отведем роль только иллюстрации поведения функции и поэтому будем ограничиваться построением «эскизов» графиков, отражающих основные особенности функций.

Табличный способ

Отметим табличный способ задания функции, когда некоторые значения аргумента и соответствующие им значения функции в определенном порядке размещаются в таблице. Так построены известные таблицы тригонометрических функций, таблицы логарифмов и т.п. В виде таблицы обычно представляют зависимость между величинами, измеряемыми при экспериментальных исследованиях, наблюдениях, испытаниях.

Недостаток этого способа состоит в невозможности непосредственного определения значений функции для значений аргумента, не входящих в таблицу. Если есть уверенность, что непредставленные в таблице значения аргумента принадлежат области определения рассматриваемой функции, то соответствующие им значения функции могут быть вычислены приближенно при помощи интерполяции и экстраполяции.

Пример

x 3 5.1 10 12.5
y 9 23 80 110

Алгоритмический и словесный способы задания функций

Функцию можно задать алгоритмическим (или программным ) способом, который широко используют при вычислениях на ЭВМ.

Наконец, можно отметить описательный (или словесный ) способ задания функции, когда правило соответствия значений функции значениям аргумента выражено словами.

Например, функцию %%[x] = m~\forall {x \in }

Публикации по теме