Проблемы современной физики вып 3 ил 1955г. Нерешённые проблемы современной физики

Министерство образования и науки Российской Федерации Федеральное агентство по образованию Ярославский государственный университет им. <...> С.П. Зимин © Ярославский государственный университет , 2007 2 Содержание К ВОПРОСУ ОБ ОЦЕНКЕ КАЧЕСТВА ВОССТАНОВЛЕННЫХ ИЗОБРАЖЕНИЙ 7 <...> Т.К. Артёмова, А.С. Гвоздарёв, Е.А. Кузнецов.................................. 14 О ВЛИЯНИИ ЭЛЕКТРИЧЕКОГО ЗАРЯДА НА УсЛОВИЯ РАЗВИТИЯ ТЕПЛОВОЙ КОНВЕКЦИИ В ЖИДКОМ СЛОЕ СО СВОБОДНОЙ ПОВЕРХНОСТЬЮ <...> А.А. Абдуллоев, Е.Ю. Саутов∗ Аннотация Рассматривается вопрос оценки качества восстановленных изображений . <...> На данный момент наиболее популярной объективной мерой служит пиковое отношение сигнал/шум (ПОСШ) . <...> П.Г. Демидова МОДЕЛИРОВАНИЕ ОБЪЕКТА В БЛИЖНЕЙ РАДИОГОЛОГРАФИИ ПО ЕГО БИСТАТИЧЕСКОЙ ДИАГРАММЕ РАССЕЯНИЯ <...> Т.К. Артёмова, А.С. Гвоздарёв, Е.А. Кузнецов Аннотация Исследовалась возможность идентификации объекта по рассеянному им полю для задач ближней радиоголографии . <...> где {ψ~hs } – новые коэффициенты разложения, ahs – тензор рассеяния , а базисные функции {H hs } выбраны таким образом, чтобы результирующее поле удовлетворяло условию излучения Зоммерфельда: 16 lim <...> С учётом того, что цилиндр считается идеально проводящим, тензор рассеяния можно представить в виде диагональной матрицы: :  a ρ Ar 0 0   hs <...> П.Г. Демидова О ВЛИЯНИИ ЭЛЕКТРИЧЕКОГО ЗАРЯДА НА УсЛОВИЯ РАЗВИТИЯ ТЕПЛОВОЙ КОНВЕКЦИИ В ЖИДКОМ СЛОЕ СО СВОБОДНОЙ ПОВЕРХНОСТЬЮ <...> Введение Вопрос определения условий развития тепловой конвекции в подогреваемом снизу жидком слое неоднократно исследовался в разнообразных постановках , в том числе учитывающих возможность развития деформации формы свободной поверхности жидкости . <...> движение в жидкости с полем скоростей U (x, t) и волновое искажение рельефа свободной поверхности жидкости ξ (x, t) , и имеют тот же порядок малости , что и ξ , а именно: T ~ ρ ~ p ~ U ~ ξ ~ kT γ . <...> E = − grad (Φ 0 (z) + Φ(x, z, t)) , где малая поправка Φ(x, z, t) , связанная с волновой деформацией свободной поверхности <...>

Актуальные_проблемы_физики._Вып._6_Сборник_научных_трудов_молодых_ученых,_аспирантов_и_студентов.pdf

Министерство образования и науки Российской Федерации Федеральное агентство по образованию Ярославский государственный университет им. П.Г. Демидова Актуальные проблемы физики Сборник научных трудов молодых ученых, аспирантов и студентов Выпуск 6 Ярославль 2007 1

Стр.1

УДК 53 ББК В3я43 А 44 Рекомендовано Редакционно-издательским советом университета в качестве научного издания. План 2005 года Актуальные проблемы физики: Сб. науч. тр. молоА 44 дых ученых, аспирантов и студентов. Выпуск 6 / Отв. за вып. д-р физ.-мат. наук С.П. Зимин; Яросл. гос. ун-т. – Ярославль: ЯрГУ, 2007. –262 с. В сборнике представлены статьи по различным направлениям физики, написанные молодыми учеными, аспирантами и студентами физического факультета Ярославского государственного университета им. П.Г. Демидова. УДК 53 ББК В3я43 Ответственный за выпуск доктор физико-математических наук С.П. Зимин © Ярославский государственный университет, 2007 2

Стр.2

Содержание К ВОПРОСУ ОБ ОЦЕНКЕ КАЧЕСТВА ВОССТАНОВЛЕННЫХ ИЗОБРАЖЕНИЙ 7 А.А. Абдуллоев, Е.Ю. Саутов................................................................ 7 МОДЕЛИРОВАНИЕ ОБЪЕКТА В БЛИЖНЕЙ РАДИОГОЛОГРАФИИ ПО ЕГО БИСТАТИЧЕСКОЙ ДИАГРАММЕ РАССЕЯНИЯ Т.К. Артёмова, А.С. Гвоздарёв, Е.А. Кузнецов.................................. 14 О ВЛИЯНИИ ЭЛЕКТРИЧЕКОГО ЗАРЯДА НА УсЛОВИЯ РАЗВИТИЯ ТЕПЛОВОЙ КОНВЕКЦИИ В ЖИДКОМ СЛОЕ СО СВОБОДНОЙ ПОВЕРХНОСТЬЮ Д.Ф. Белоножко, А.В. Козин................................................................ 22 ИССЛЕДОВАНИЕ РАССЕИВАЮЩИХ СВОЙСТВ ПАССИВНОГО УПРАВЛЯЕМОГО ОТРАЖАТЕЛЯ ДЛЯ ЗАДАЧ РАДИОГОЛОГРАФИИ СФОКУСИРОВАННЫХ ИЗОБРАЖЕНИЙ М.А. Боков, А.С. Леонтьев.................................................................. 31 НЕЛИНЕЙНЫЕ НЕОСЕСИММЕТРИЧНЫЕ ОСЦИЛЛЯЦИИ ЗАРЯЖЕННОЙ СТРУИ ДИЭЛЕКТРИЧЕСКОЙ ЖИДКОСТИ Н.В. Воронина........................................................................................ 39 ПРИМЕНЕНИЕ АППАРАТА ЦЕПЕЙ МАРКОВА ДЛЯ ИССЛЕДОВАНИЯ СИСТЕМЫ ЦИКЛОВОЙ СИНХРОНИЗАЦИИИ В СИСТЕМАХ OFDM И.А.Денежкин, В.А.Чвало.................................................................... 48 МИКРОКОНТРОЛЛЕРНАЯ УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ГОДОГРАФОВ ВЫХОДНОГО НАПРЯЖЕНИЯ ВИХРЕТОКОВОГО ПРЕОБРАЗОВАТЕЛЯ А.Е. Гладун............................................................................................. 59 РАСЧЕТ УПРАВЛЯЕМОГО КОМПЬЮТЕРОМ ЛАБОРАТОРНОГО МАГНИТА С.А. Голызина........................................................................................ 65 ОСОБЕННОСТИ МИКРОРЕЛЬЕФА ЭПИТАКСИАЛЬНЫХ ПЛЕНОК PbSe ПОСЛЕ ОБРАБОТКИ В АРГОНОВОЙ ПЛАЗМЕ Е.С. Горлачев, С.В. Кутровская.......................................................... 72 3

Стр.3

СИСТЕМА ОПТИЧЕСКОЙ ЛАЗЕРНОЙ ТРИАНГУЛЯЦИИ ПОВЫШЕННОЙ НАДЕЖНОСТИ................................................... 78 Е.В. Давыденко...................................................................................... 78 ПОГЛОЩЕНИЕ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ ПЛЕЧОМ ЧЕЛОВЕКА В ДИАПАЗОНАХ ЧАСТОТ СОТОВОЙ И РАДИОРЕЛЕЙНОЙ СВЯЗИ В.В. Дерябина, Т.К. Артёмова............................................................. 86 ВЛИЯНИЕ КРИВИЗНЫ ФАЗОВОГО ФРОНТА НА ОСЛАБЛЕНИЕ ПОЛЯ ПРИ ДИФРАКЦИИ НА СОВОКУПНОСТИ ПОГЛОЩАЮЩИХ ЭКРАНОВ А.В. Дымов............................................................................................. 94 ВЛИЯНИЕ ТЕМПЕРАТУРНЫХ РЕЖИМОВ НА ОСЦИЛЛЯЦИИ ПУЗЫРЬКА В ЖИДКОСТИ И.Г. Жарова......................................................................................... 102 ОПТИМИЗАЦИЯ ФРАКТАЛЬНОГО АЛГОРИТМА СЖАТИЯ СТАТИЧЕСКИХ ИЗОБРАЖЕНИЙ Д.А.Зараменский................................................................................. 110 АНАЛИЗ ВЛИЯНИЯ ЭФФЕКТИВНОСТИ ОЦЕНКИ НЕСУЩЕЙ ЧАСТОТЫ И НАЧАЛЬНОЙ ФАЗЫ НА РАСПОЗНАВАНИЕ СОЗВЕЗДИЯ ФАЗОВОЙ МАНИПУЛЯЦИИ О.В. Караван........................................................................................ 118 НЕЛИНЕЙНЫЕ ПЕРИОДИЧЕСКИЕ ВОЛНЫ В ТОНКОМ СЛОЕ ВЯЗКОЙ ЖИДКОСТИ А.В. Климов, А.В. Присяжнюк........................................................... 124 КЛАССИФИКАЦИЯ ПОМЕХОУСТОЙЧИВЫХ КОДОВ В СИСТЕМАХ ПЕРЕДАЧИ ИНФОРМАЦИИ О.О. Козлова........................................................................................ 133 ИССЛЕДОВАНИЕ МЕХАНИЧЕСКИХ СВОЙСТВ ЖИДКОСТИ ОПТИЧЕСКИМ МЕТОДОМ Е.Н. Кокомова..................................................................................... 138 АЛГОРИТМ РАСПОЗНАВАНИЯ КОМАНД С ОГРАНИЧЕННЫМ СЛОВАРЕМ А.В. Коновалов..................................................................................... 144 4

Стр.4

АНАЛИЗ ФАЗОВОЙ ХАОТИЧЕСКОЙ СИНХРОНИЗАЦИИ СВЯЗАННЫХ СИСТЕМ ФАПЧ С ПОМОЩЬЮ НЕПРЕРЫВНОГО ВЕЙВЛЕТ-ПРЕОБРАЗОВАНИЯ Ю.Н. Коновалова, А.А. Коточигов, А.В. Ходунин........................... 151 УЧЕТ ВЛИЯНИЯ ВРАЩЕНИЯ МАГНЕТРОНА Ю.В. Кострикина............................................................................... 159 НЕЛИНЕЙНЫЕ ОСЦИЛЛЯЦИИ ЗАРЯЖЕННОГО СЛОЯ ИДЕАЛЬНОЙ ЖИДКОСТИ НА ПОВЕРХНОСТИ ТВЕРДОГО СФЕРИЧЕСКОГО ЯДРА В ПОЛЕ ФЛУКТУАЦИОННЫХ СИЛ О. С. Крючков...................................................................................... 164 ИССЛЕДОВАНИЕ ОПТИЧЕСКИХ СВОЙСТВ СТРУКТУР CrOx/Si М. Ю. Курашов.................................................................................... 172 ПОГРЕШНОСТИ КОНСТРУКЦИИ ФОКУСИРУЮЩИХ ЭЛЕМЕНТОВ И ИХ ВЛИЯНИЕ НА КАЧЕСТВО РАДИОИЗОБРАЖЕНИЯ А.С. Леонтьев..................................................................................... 176 ПЕРЕДАЧА ПОТОКОВОГО ВИДЕО ПО IP-СЕТИ ПРИ ЗНАЧИТЕЛЬНОЙ ЗАГРУЗКЕ КАНАЛА С ПРИМЕНЕНИЕМ ВОССТАНАВЛИВАЮЩЕГО АЛГОРИТМА QoS В.Г. Медведев, В.В. Тупицын, Е.В. Давыденко................................. 181 УДАЛЕНИЕ ШУМА ИЗ ИЗОБРАЖЕНИЙ НА ОСНОВЕ ВЕЙВЛЕТПРЕОБРАЗОВАНИЯ А.А. Моисеев, В.А. Волохов................................................................ 189 СИНТЕЗ АЛГОРИТМА ОЦЕНКИ ПОМЕХ ДРОБНОСТИ В СПЕКТРЕ СИГНАЛА ΔΣ-СИНТЕЗАТОРА ВЫСОКОСТАБИЛЬНЫХ ЧАСТОТ М.В. Назаров, В.Г. Шушков............................................................... 198 СТАТИСТИЧЕСКАЯ ДИНАМИКА ИМПУЛЬСНОГО КОЛЬЦА ФАПЧ СО СТРОБОСКОПИЧЕСКИМ ФАЗОВЫМ ДЕТЕКТОРОМ В.Ю. Новиков, А.С. Теперев, В.Г. Шушков....................................... 209 ПРИМЕНЕНИЕ СОГЛАСОВАННЫХ ОДНОМЕРНЫХ ВЕЙВЛЕТФИЛЬТРОВ В ЗАДАЧЕ РАСПОЗНАВАНИЯ РЕЧЕВЫХ СИГНАЛОВ С.А. Новоселов.................................................................................... 217 5

Стр.5

ИССЛЕДОВАНИЕ НЕОДНОРОДНОСТЕЙ В ЖИДКОСТИ А.В. Перминов..................................................................................... 224 ЦИФРОВОЙ ТЕПЛОВИЗОР НА ОСНОВЕ ФОТОПРИЕМНОГО УСТРОЙСТВА ФУР-129Л А.И. Топников, А.Н. Попов, А.А. Селифонтов................................. 231 ФЛУКТУАЦИИ МИЛЛИМЕТРОВЫХ ВОЛН В ПРИЗЕМНОЙ ТУРБУЛЕНТНОЙ ПОГЛОЩАЮЩЕЙ АТМОСФЕРЕ Е.Н. Туркина........................................................................................ 239 ИСПОЛЬЗОВАНИЕ АЛГОРИТМОВ РАСПОЗНАВАНИЯ И СИНТЕЗА РЕЧИ ДЛЯ СОЗДАНИЯ ЭФФЕКТИВНОГО РЕЧЕВОГО КОДЕКА С.В. Ульдинович.................................................................................. 246 ПАРАМЕТРИЧЕСКАЯ ЭЛЕКТРОСТАТИЧЕСКАЯ НЕУСТОЙЧИВОСТЬ ГРАНИЦЫ РАЗДЕЛА ДВУХ СРЕД С.В. Черникова, А.С. Голованов........................................................ 253 6

Стр.6

К ВОПРОСУ ОБ ОЦЕНКЕ КАЧЕСТВА ВОССТАНОВЛЕННЫХ ИЗОБРАЖЕНИЙ А.А. Абдуллоев, Е.Ю. Саутов∗ Аннотация Рассматривается вопрос оценки качества восстановленных изображений. Для оценки визуальных искажений предлагается использование универсального индекса качества. В отличие от аналогичных алгоритмов на основе критерия среднеквадратичной ошибки, предлагаемый подход учитывает искажения яркости и контраста, а также степень коррелированности между эталонным и восстановленным изображениями. Результаты моделирования показывают хорошую коррелированность данного критерия с визуально воспринимаемым качеством изображений. Введение До сих пор наиболее надёжной оценкой качества изображения считается средняя экспертная оценка. Но она требует продолжительной работы нескольких людей и поэтому является дорогой и слишком медленной для использования в практических целях. В этом смысле более предпочтительны объективные (алгоритмические) критерии качества изображения , позволяющие проводить оценки автоматически. В настоящий момент к объективным мерам качества предъявляются следующие требования. Во-первых, эти метрики должны быть как можно более надёжными с точки зрения визуального восприятия, т. е. хорошо согласовываться с результатами субъективных оценок. Во-вторых, они должны обладать низкой вычислительной сложностью, что повышает их практическую значимость. В-третьих, желательно, чтобы эти метрики имели простую аналитическую форму и их можно было бы применять в качестве критериев оптимальности при выборе параметров системы обработки изображений . На данный момент наиболее популярной объективной мерой служит пиковое отношение сигнал/шум (ПОСШ) . Она обычно используется для сравнения различных алгоритмов обработки. ∗ Работа выполнена под руководством В.В. Хрящёва. 7

Реферат

по физике

на тему:

«Проблемы современной физики»


Начнем с проблемы, которая привлекает сейчас наибольшее внимание физиков, над которой, пожалуй, работает наибольшее количество исследователей и исследовательских лабораторий во всем мире, – это проблема атомного ядра и, в частности, как наиболее актуальная и важная ее часть – так называемая проблема урана.

Удалось установить, что атомы тол состоят 113сравнительно тяжелого положительно заряженного ядра, окруженного некоторым числом электронов. Положительный заряд ядра и отрицательные заряды окружающих его электронов компенсируют друг друга. В целом атом кажется нейтральным.

С 1913 почти до 1930 г. физики изучали самым тщательным образом свойства и внешние проявления той атмосферы электронов, которые окружают атомное ядро. Эти исследования привели к единой цельной теории, обнаружившей новые законы движения электронов в атоме, ранее нам неизвестные. Эта теория получила название квантовой, или волновой, теории материи. К ней мы еще вернемся.

Примерно с 1930 г. основное внимание было направлено на атомное ядро. Ядро нас особенно интересует, потому что в нем сосредоточена почти вся масса атома. А масса есть мера того запаса энергии, которой обладает данная система.

Каждый грамм любого вещества заключает в себе точно известную энергию и притом весьма значительную. Так, например, в стакане чаю, который весит примерно 200 г., заключено количество энергии, для получения которой нужно было бы сжечь около миллиона тонн угля.

Эта энергия находится именно в атомном ядре, потому что 0.999 всей энергии, всей массы тела заключает в себе ядра и только меньше 0.001 всей массы может быть отнесено к энергии электронов. Колоссальные запасы энергии, находящиеся в ядрах, несравнимы ни с какойформой энергии, какую мы знали до сих пор.

Естественно, заманчива надежда обладать этой энергией. Но для этого сначала нужно изучить ее, а затем найти пути для ее использования.

Но, кроме того, ядро интересует нас и по другим причинам. Ядро атома целиком определяет всю природу его, определяет его химические свойства и его индивидуальность.

Если железо отличается от меди, от углерода, от свинца, то различие это лежит именно в атомных ядрах, а не в электронах. Электроны у всех тел одни и те же, и любой атом может потерять часть своих электронов вплоть до того, что могут быть сорваны все электроны с атома. Пока цело и неизменно атомное ядро со своим положительным зарядом, оно всегда притянет к себе столько электронов, сколько необходимо для компенсации его заряда. Если в ядре серебра 47 зарядов, то оно всегда присоединит к себе 47 электронов. Поэтому, пока целю ядро, мы имеем дело с тем же самым элементом, с тем же самым веществом. Стоит изменить ядро, как из одного химического элемента получается другой. Только тогда осуществилась бы давняя и давно уже за безнадежностью оставленная мечта алхимии – превращения одних элементов в другие. На современном этапе истории эта мечта осуществилась, не совсем в тех формах и не теми результатами, которые ожидались алхимиками.

Что мы знаем об атомном ядре? Ядро в свою очередь состоит из еще более мелких составных частей. Эти составные части представляют собой простейшие известные нам в природе ядра.

Самое легкое и потому самое простое ядро – это ядро атома водорода. Водород – первый элемент периодической системы с атомным весом около 1. Ядро водорода входит в состав всех других ядер. Но, с другой стороны, легко видеть, что все ядра не могут состоять только из водородных ядер, как давно, уже более 100 лет назад, предполагал Проут.

Ядра атомов обладают определенной массой, которая дается атомным весом, и определенным зарядом. Заряд ядра задает тот номер, который данный элемент занимает в периодической системе Менделеева.

Водород в этой системе – первый элемент: у пего один положительный заряд и один электрон. Второй по порядку элемент имеет ядро с двойным зарядом, третий – с тройным и т.д. вплоть до самого последнего и самого тяжелого из всех элементов – урана, ядро которого имеет 92 положительных заряда.

Менделеев, систематизируя громадный опытный материал в области химии, создал периодическую систему. Он, конечно, не подозревал в то время о существовании ядер, но не думал, что порядок элементов в созданной им системе определяется просто зарядом ядра и ничем больше. Оказывается, что эти две характеристики атомных ядер – атомный вес и заряд – не соответствуют тому, что мы могли бы ожидать, исходя из гипотезы Проута.

Так, второй элемент – гелий имеет атомный вес 4. Если он состоит из 4 ядер водорода, то и заряд его должен был бы быть 4, а между тем заряд его 2, потому что это второй элемент. Таким образом, нужно думать, что в гелии всего 2 ядра водорода. Ядра водорода мы называем протонами. Но у кроме того, в ядре гелия есть еще 2 единицы массы, которые заряда не имеют. Вторую составную часть ядра приходится считать незаряженным ядром водорода. Приходится различать ядра водорода, обладающие зарядом, или протоны, и ядра, не обладающие совсем электрическим зарядом, нейтральные, их мы называем нейтронами.

Все ядра состоят из протонов и нейтронов. В гелии 2 протона и 2 нейтрона. В азоте 7 протонов и 7 нейтронов. В кислороде 8 протонов и 8 нейтронов, в углероде С протонов и 6 нейтронов.

Но дальше эта простота несколько нарушается, число нейтронов становится все больше и больше но сравнению с числом протонов, и в самом последнем элементе – уране имеется 92 заряда, 92 протона, а атомный вес его 238. Следовательно, к 92 протонам прибавлено еще 146 нейтронов.

Конечно, нельзя думать, что то, что мы знаем в 1940 г., есть уже исчерпывающее отображение реального мира и многообразие заканчивается на этих частицах, которые являются элементарными в буквальном смысле слова. Понятие элементарности означает только определенный этап в нашем проникновении в глубь природы. На данном этапе мы знаем, однако, состав атома лишь вплоть до этих элементов.

Эта простая картина па самом деле была выяснена не так легко. Пришлось преодолеть целый ряд затруднений, целый ряд противоречий, которые и момент своего выявления казались безвыходными, но которые, как всегда в истории науки, оказались только различными сторонами более общей картины, представлявшей собою синтез того, что казалось противоречием, и мы переходили к следующему, более глубокому пониманию проблемы.

Важнейшим из этих затруднений оказалось следующее: в самом начале нашего столетия было уже известно, что из недр радиоактивных атомов (о ядре тогда еще не подозревали) вылетают б-частицы (они оказались ядрами гелия) и в-частицы (электроны). Казалось, то, что вылетает из атома, это и есть то, из чего он состоит. Следовательно, казалось, ядра атомов состоят из ядер гелия и электронов.

Ошибочность первой части этого утверждения ясна: очевидно, что невозможно составить ядро водорода из вчетверо более тяжелых ядер гелия: часть не может быть больше целого.

Оказалась неверной и вторая часть этого утверждения. Электроны действительно вылетают при ядерных процессах, и тем не менее электронов в ядрах нет. Казалось бы, здесь – логическое противоречие. Так ли это?

Мы знаем, что атомы испускают свет, световые кванты (фотоны).

Что же эти фотоны запасены в атоме в виде света и ждут момента для вылета? Очевидно, нет. Мы понимаем испускание света таким образом, что электрические заряды в атоме, переходя из одного состояния в другое, освобождают некоторое количество энергии, которая переходит в форму лучистой энергии, распространяющейся в пространстве.

Аналогичные соображения можно высказать и относительно электрона. Электрон по целому ряду соображений не может находиться в атомном ядре. Но он не может и создаваться в ядре, как фотон, потому что обладает отрицательным электрическим зарядом. Твердо установлено, что электрический заряд так же, как и энергия и материя в целом, остается неизменным; общее количество электричества нигде не создается и нигде не исчезает. Следовательно, если уносится отрицательный заряд, то ядро получает равный ему положительный заряд. Процесс испускания электронов сопровождается изменением заряда ядра. Но ядро состоитиз протопоп и нейтронов, значит, один из незаряженные нейтронов превратился в положительно заряженный протон.

Отдельный отрицательный электрон не может ни возникнуть, ни исчезнуть. Но два противоположных заряда могут при достаточном сближении взаимно скомпенсировать друг друга или даже совсем исчезнуть, выделив свой запас энергии в виде лучистой энергии (фотонов).

Какие же это положительные заряды? Удалось установить, что, кроме отрицательных электронов, в природе наблюдаются и могут быть созданы средствами лабораторий и техники положительные заряды, которые по всем своим свойствам: по массе, по величине заряда вполне соответствуют электронам, но только имеют положительный заряд. Такой заряд мы называем позитроном.

Таким образом, мы различаем электроны (отрицательные) и позитроны (положительные), отличающиеся только противоположным знаком заряда. Вблизи ядер могут происходить как процессы соединения позитронов с электронами, так и расщепления на электрон и позитрон, причем электрон уходит из атома, а позитрон входит в ядро, превращая нейтрон в протон. Одновременно с электроном уходит и незаряженная частица – нейтрино.

Наблюдаются и такие процессы в ядре, при которых электрон передает свой заряд ядру, превращая протон в нейтрон, а позитрон вылетает из атома. Когда из атома вылетает электрон, заряд ядра увеличивается на единицу; когда вылетает позитрон или протон, заряд и номер в периодической системе уменьшается на одну единицу.

Все ядра построены из заряженных протонов и незаряженных нейтронов. Спрашивается, какими силами они сдерживаются в атомном ядре, что их связывает между собой, что определяет построение различных атомных ядер из этих элементов?

  • Физика
    • Перевод

    Наша Стандартная модель элементарных частиц и взаимодействий не так давно стала настолько полной, насколько вообще можно было желать. Все до единой элементарные частицы – во всех их возможных видах – создали в лаборатории, измерили, и для всех определили свойства. Дольше всех державшиеся верхний кварк, антикварк, тау-нейтрино и антинейтрино, и, наконец, бозон Хиггса, пали жертвами наших возможностей.

    А последняя – бозон Хиггса – ещё и решила старую задачу физики: наконец, мы можем продемонстрировать, откуда элементарные частицы берут свою массу!

    Это всё круто, но наука-то не заканчивается в момент окончания решения этой загадки. Наоборот, она поднимает важные вопросы, и один из них, это «а что дальше?». Насчёт Стандартной модели можно сказать, что мы ещё не всё знаем. И для большинства физиков один из вопросов особенно важен – для его описания давайте сначала рассмотрим следующее свойство Стандартной модели.


    С одной стороны, слабое, электромагнитное и сильное взаимодействие могут быть очень важны, в зависимости от их энергий и расстояний, на которых происходит взаимодействие. Но с гравитацией всё не так.

    Мы можем взять две любых элементарных частицы – любой массы и подверженной любым взаимодействиям – и обнаружить, что гравитация на 40 порядков слабее, чем любая другая сила во Вселенной. Это значит, что сила гравитации в 10 40 раз слабее трёх оставшихся сил. К примеру, хотя они и не фундаментальные, но если вы возьмёте два протона и разнесёте их на метр, электромагнитное отталкивание между ними будет в 10 40 раз сильнее, чем гравитационное притяжение. Или, иными словами, нам нужно увеличить силу гравитации в 10 000 000 000 000 000 000 000 000 000 000 000 000 000 раз, чтобы сравнять её с любой другой из сил.

    При этом нельзя просто увеличить массу протона в 10 20 раз, чтобы гравитация стянула их вместе, преодолевая электромагнитную силу.

    Вместо этого для того, чтобы реакции вроде той, что проиллюстрирована выше, происходили спонтанно, когда протоны преодолевают их электромагнитное отталкивание, вам нужно собрать вместе 10 56 протонов. Только собравшись вместе и поддавшись силе гравитации, они смогут преодолеть электромагнетизм. Оказывается, что 10 56 протонов как раз составят минимальную возможную массу звезды.

    Это описание того, как работает Вселенная – но почему она такая, мы не знаем. Почему гравитация настолько слабее остальных взаимодействий? Почему «гравитационный заряд» (т.е. масса) настолько слабее электрического или цветового, или даже слабого?

    Вот в этом и состоит проблема иерархии, и она, по многим причинам, служит величайшей нерешённой проблемой физики. Ответ нам неизвестен, но нельзя сказать, что мы находимся в полном неведении. Теоретически у нас есть несколько хороших идей по поводу поиска решения, и инструмент для поиска доказательств их правильности.

    Пока что Большой адронный коллайдер – самый высокоэнергетический из коллайдеров – достигал беспрецедентных уровней энергии в лабораторных условиях, собирал кучу данных и воссоздавал происходящее в точках столкновения. Сюда входят и создание новых, доселе невиданных частиц (таких, как бозон Хиггса), и появление старых, всем известных частиц Стандартной модели (кварки, лептоны, калибровочные бозоны). Также он способен, в случае их существования, произвести любые другие частицы, не входящие в Стандартную модель.

    Существует четыре возможных способа, известных мне – то есть, четыре хороших идеи – решения проблемы иерархии. Хорошие новости в том, что если природа выбрала какой-то один из них, то БАК его найдёт! (А если нет, поиски продолжатся).

    Кроме бозона Хиггса, найденного несколько лет назад, никаких новых фундаментальных частиц на БАК не нашли. (Более того, вообще не наблюдается никаких интригующих новых кандидатов в частицы). И ещё, найденная частица полностью соответствовала описанию Стандартной модели; никаких статистически важных намёков на новую физику замечено не было. Ни на композитные бозоны Хиггса, ни на множественные хиггсовские частицы, ни на нестандартные распады, ничего такого.

    Но теперь мы начали получать данные от ещё более высоких энергий, в два раза больше предыдущих, до 13-14 ТэВ, чтобы найти что-нибудь ещё. И какие же в данном ключе есть возможные и разумные решения проблемы иерархии?

    1) Суперсимметрия, или SUSY. Суперсимметрия – особая симметрия, способная заставить нормальные массы любых частиц, достаточно крупных для того, чтобы гравитация была сравнима с другими воздействиями, взаимно уничтожиться с большой степенью точности. Эта симметрия также предполагает, что у каждой частицы в стандартной модели есть суперчастица-партнёр, и что существует пять частиц Хиггса и пять их суперпартнёров. Если такая симметрия существует, она, должно быть, нарушена, или у суперпартнёров были бы такие же массы, как у обычных частиц, и их бы уже давно нашли.

    Если SUSY существует на подходящем для решения проблемы иерархии масштабе, то БАК, дойдя до энергий в 14 ТэВ, должен найти хотя бы одного суперпартнёра, а также вторую частицу Хиггса. Иначе существование очень тяжёлых суперпартнёров само по себе приведёт ещё к одной проблеме иерархии, у которой не будет хорошего решения. (Что интересно, отсутствие SUSY-частиц на всех энергиях опровергнет теорию струн, поскольку суперсимметрия – это необходимое условие для теорий струн, содержащих стандартную модель элементарных частиц).

    Вот вам первое возможное решение проблемы иерархии, у которого в настоящий момент нет никаких доказательств.

    Имеется возможность создать крохотные сверхохлаждённые кронштейны, наполненные пьезоэлектрическими кристаллами (вырабатывающими электроэнергию при деформации), с расстояниями между ними . Эта технология позволяет нам наложить на «большие» измерения ограничения в 5-10 микрон. Иначе говоря, гравитация работает согласно предсказаниям ОТО на масштабах гораздо меньших миллиметра. Так что если и существуют большие дополнительные измерения, они находятся на уровнях энергий, недоступных для БАК, и что более важно, не решают проблему иерархии.

    Конечно, для проблемы иерархии может найтись совершенно другое решение , которое на современных коллайдерах не найти, или решения ей вообще нет; это просто может быть свойство природы безо всякого объяснения для него. Но наука не будет продвигаться без попыток, и именно это пытаются делать эти идеи и поиски: продвигать наши знания о Вселенной вперёд. И, как всегда, с началом второго запуска БАК я с нетерпением ожидаю того, что там может появиться, кроме уже открытого бозона Хиггса!

    Теги:

    • гравитация
    • фундаментальные взаимодействия
    • бак
    Добавить метки


    Аронов Р.А., Шемякинский В.М. Два подхода к проблеме взаимоотношения геометрии и физики // Философия науки. Вып. 7: Формирование современной естественнонаучной парадигмы – М.: , 2001

    В современной физике господствует мнение, которое наиболее отчетливо выразил В.Гейзенберг в статье «Развитие понятий в физике ХХ столетия»: эйнштейновский подход к проблеме взаимоотношения геометрии и физики «переоценил возможности геометрической точки зрения. Гранулярная структура материи является следствием квантовой теории, а не геометрии; квантовая же теория касается очень фундаментального свойства нашего описания Природы, которое не содержалось в эйнштейновской геометризации силовых полей» .

    Разумеется, можно спорить о том, переоценил эйнштейновский подход возможности геометрической точки зрения или не переоценил. Но представляется бесспорным, что утверждение Гейзенберга : «гранулярная структура материи является следствием квантовой теории, а не геометрии», – является неточным. Материя обладает структурой до, вне и независимо от какой бы то ни было теории. Что же касается геометрии, то хотя из контекста статьи Гейзенберга неясно, о чем именно идет речь – о гносеологическом аспекте проблемы (о геометрии как о фрагменте математики или же об онтологическом (о геометрии реального пространства), однако и в том, и в другом случае структура материи не является следствием геометрии. В первом – по той же причине, по какой она не является следствием квантовой теории. Во втором – потому, что сама геометрия реального пространства является одним из аспектов структуры материи .

    Верно, конечно, что квантовая теория отражает такие свойства природы, информация о которых не содержалась в эйнштейновской геометризации силовых полей. Но ведь геометрическая точка зрения и та конкретная форма, в которой она представлена в эйнштейновской попытке геометризации силовых полей, – это отнюдь не одно и то же. В конечном счете именно последнее обстоятельство обусловило то, что успешная реализация геометрической точки зрения в общей теории относительности (ОТО) стимулировала поиски физической теории, которая по метрическим и топологическим свойствам реального пространства и времени могла бы воссоздать (и тем самым объяснить) поведение и свойства элементарных частиц.

    квантовые явления. Большинство физиков, несомненно, ответят убежденным «нет», ибо они считают, что квантовая проблема должна решаться принципиально иным путем. Как бы то ни было, нам остаются в утешение слова Лессинга: «Стремление к истине ценнее, дороже уверенного обладания ею» .

    Действительно, сами по себе математические трудности не могут служить аргументом против того направления в развитии физики, которого придерживался Эйнштейн . С аналогичными трудностями сталкиваются и другие направления, поскольку (как это отметил и Эйнштейн) физика с необходимостью переходит от линейных теорий к существенно нелинейным. Главная проблема заключается в том, может ли геометризнованная полевая картина физического мира объяснить атомистическую структуру вещества и излучения, а также квантовые явления, может ли она в принципе быть достаточной основой для адекватного отражения квантовых явлений. Нам представляется, что историко-научный и философский анализ тех потенций, которые содержатся в подходах Пуанкаре и Эйнштейна , может пролить свет на некоторые аспекты этой проблемы.

    Широко известна замечательная фраза П.С.Лапласа о том, что человеческий разум встречает меньше трудностей, когда он продвигается вперед, чем тогда, когда он углубляется в самого себя. Но продвижение вперед так или иначе связано с углублением разума в самого себя, с изменением оснований, стиля и методов, с пересмотром ценностно-целевых установок научного познания, с переходом от привычной парадигмы к новой, более сложной и именно в силу этого способной восстановить утраченное соответствие разума и действительности.

    Одним из первых шагов на этом пути, как известно, стало внеэмпирическое обоснование неевклидовых геометрий, данное «Эрлангенской программой» Ф.Клейна, явившееся одной из предпосылок освобождения физического мышления от пут пространственной картины мира и понимания геометрического описания не как описания арены физических процессов, а как адекватного объяснения динамики физического мира. Это переосмысление роли геометрии в физическом познании привело в конечном счете к построению программы геометризации физики. Однако путь к этой программе лежал через конвенционализм Пуанкаре , распространившего инвариантно-групповой метод Клейна на физику.

    В решении проблемы соотношения геометрии и физики Пуанкаре опирался на концепцию «Эрлангенской программы», исходя из представления о геометрии как абстрактной науке, которая сама по

    себе не отражает законов внешнего мира: «Математические теории не имеют целью открыть нам истинную природу вещей; такая претензия была бы безрассудной. Единственная цель их – систематизировать физические законы, которые мы узнаем из опыта, но которых мы не могли бы даже и выразить без помощи математики» .

    При таком подходе геометрия явно ускользает от опытной проверки: «Если справедлива геометрия Лобачевского, то параллакс очень удаленной звезды будет конечным; если справедлива геометрия Римана, то он будет отрицательным. Эти результаты, по-видимому, допускают опытную проверку; и можно было надеяться, что астрономические наблюдения могут решить выбор между тремя геометриями. Но то, что в астрономии называется прямой линией, есть просто траектория светового луча. Если, следовательно, сверх ожидания, удалось бы открыть отрицательные параллаксы или доказать, что все параллаксы больше известного предела, то представлялся бы выбор между двумя заключениями: мы могли бы или отказаться от евклидовой геометрии, или изменить законы оптики и допустить, что свет распространяется не в точности по прямой линии» .

    Исходную посылку физического познания – физика изучает материальные процессы в пространстве и времени – Пуанкаре интерпретирует не как отношение вложения (пространство и время, по Ньютону , являются вместилищами материальных процессов), а как отношение между двумя классами понятий: геометрическими, которые непосредственно в опыте не проверяются, и собственно физическими, логически зависящими от геометрических, но сопоставимыми с результатами опытов. Для Пуанкаре единственным объектом физического познания являются материальные процессы, а пространство интерпретируется как абстрактное многообразие, являясь предметом математического исследования. Как геометрия сама по себе не изучает внешний мир, так физика не изучает абстрактное пространство. Но без отношения к геометрии невозможно понять физические процессы. Геометрия – это предпосылка физической теории, независимая от свойств описываемого объекта.

    В эксперименте проверяются лишь совместно геометрия (Г) и физические законы (Ф), и, следовательно, возможно произвольное деление на (Г) и (Ф) в рамках одних и тех же экспериментальных фактов. Отсюда конвенционализм Пуанкаре : неопределенное отношение геометрии к опыту ведет к отрицанию онтологического статуса как геометрии, так и физических законов и интерпретации их как условных соглашений.

    При построении специальной теории относительности (СТО) Эйнштейн исходил из критического отношения к классическому представлению о материи как веществе. Такой подход определил интерпретацию постоянства скорости света как атрибутивной характеристики поля. С точки зрения Эйнштейна не принцип постоянства

    скорости света нуждается в механическом обосновании, а он вынуждает к критическому пересмотру понятий классической механики. Такая гносеологическая постановка проблемы привела к осознанию произвольности предположений об абсолютных пространстве и времени, на которых основывается кинематика классической механики. Но если для Пуанкаре произвольность этих предположений очевидна, то для Эйнштейна она – следствие ограниченности повседневного опыта, на котором основываются эти предположения. Для Эйнштейна бессмысленно говорить о пространстве и времени безотносительно к тем физическим процессам, которые только и придают им конкретное содержание. Поэтому физические процессы, которые не могут быть объяснены на основе привычных классических представлений о пространстве и времени без дополнительных искусственных гипотез, должны вести к пересмотру этих представлений.

    Таким образом, опыт участвует в решении проблемы Пуанкаре : «Как раз те обстоятельства, которые причиняли нам раньше мучительные затруднения, и выводят нас на правильный путь после того, как мы получим больше свободы действий, отказавшись от указанных произвольных предположений. Оказывается, что как раз те два, на первый взгляд, несовместимых постулата, на которые указывает нам опыт, а именно: принцип относительности и принцип постоянства скорости света, приводят к вполне определенному решению проблемы преобразований координат и времени» . Следовательно, не сведение к привычному, а критическое отношение к нему, навеянное опытом, является условием корректного решения физической проблемы. Именно такой подход дал возможность Эйнштейну придать преобразованиям Лоренца адекватный физический смысл, которого не заметили ни Лоренц , ни Пуанкаре : первому мешала гносеологическая установка метафизического материализма, основанная на некритическом отношении к физической реальности, второму – конвенционализм , совмещающий критическое отношение к пространственно-временным представлениям классической механики с некритическим отношением к ее представлению о материи.

    «Эмансипация понятия поля от предположения о его связи с механическим носителем нашла отражение в психологически наиболее интересных процессах развития физической мысли», – писал Эйнштейн в 1952 году, вспоминая процесс становления СТО . Начиная с работ М.Фарадея и Дж.К.Максвелла и кончая работами Лоренца и Пуанкаре , сознательной целью физиков было стремление укрепить механическую основу физики, хотя объективно этот процесс вел к формированию независимого представления о поле.

    римановой концепции геометрии с переменной метрикой. Идея Римана о связи метрики с физическими причинами содержала в себе реальную возможность построения физической теории, исключающей представление о пустом пространстве, обладающем заданной метрикой и способном воздействовать на материальные процессы, не подвергаясь обратному действию.

    Непосредственно воплощая в физической теории эту идею Римана, используя риманову геометрию, исключающую физический смысл координат, ОТО как раз и дает физическую интерпретацию римановой метрики: «Согласно общей теории относительности, метрические свойства пространства-времени причинно не зависят от того, чем это пространство-время наполнено, но определены этим последним» . При таком подходе пространство как нечто физическое с заранее заданными геометрическими свойствами вообще исключается из физического представления реальности. Устранение причинной зависимости между материей и пространством и временем отнимало у «пространства и времени последний остаток физической предметности» . Но это не означало отрицание их объективности: «Пространство и время были лишены... не своей реальности, а своей каузальной абсолютности (влияющее, но не поддающееся влиянию)» . ОТО доказывала объективность пространства и времени, установив однозначную связь между геометрическими характеристиками пространства и времени и физическими характеристиками гравитационных взаимодействий.

    Построение ОТО существенным образом основывается на философском положении о первичности материи по отношению к пространству и времени: «В соответствии с классической механикой и согласно специальной теории относительности, пространство (пространство-время) существует независимо от материи (т.е. вещества – Р.А., В.Ш.) или поля... С другой стороны, согласно общей теории относительности, не существует отдельно пространство, как нечто противоположное «тому, что заполняет пространство»... Пустое пространство, т.е. пространство без поля, не существует. Пространство-время существует не само по себе, но только как структурное свойство поля» . Таким образом, отрицание пустого пространства у Эйнштейна выполняет конструктивную роль, так как связано с введением полевого представления в физическую картину мира. Поэтому Эйнштейн подчеркивает, что ход мыслей, приведший к построению ОТО, «существенно основан на понятии поля как независимом понятии» . Этим подход автора ОТО отличается не только

    В решении проблемы соотношения геометрии и физики в рамках конвенционализма следует различать два аспекта. С одной стороны, язык геометрии необходим для формулировки физических законов. С другой стороны, геометрическая структура не зависит от свойств физической реальности. Для Пуанкаре неважно, какова используемая в физике геометрия; важно лишь то, что без нее невозможно выразить физические законы. Такое понимание роли геометрии в физике ведет к отрицанию ее познавательной функции, а это для Эйнштейна неприемлемо. Для него выбор геометрии при построении физической теории подчинен высшей цели физики – познанию материального мира. Переход от евклидовой геометрии к геометрии Минковского, а от последней к геометрии Римана при переходе от классической механики к СТО, а затем к ОТО был обусловлен не только и не столько осознанием тесной связи используемой геометрии в физике с проблемой физической реальности. С точки зрения Эйнштейна , геометрия в физике не только определяет структуру физической теории, но и определяется структурой физической реальности . Только совместное выполнение физической геометрией этих двух функций позволяет избежать конвенционализма .

    «В силу естественного отбора, – писал Пуанкаре , – наш ум приспособился к условиям внешнего мира, он усвоил себе геометрию наиболее выгодную для вида, или, другими словами, наиболее удобную... Геометрия не истинна, а только выгодна» . Ум человека, действительно, приспособился к условиям внешнего мира, в том числе к метрическим свойствам реальных пространства и времени соответствующей области внешнего мира и поэтому усвоил себе ту геометрию, которая оказалась адекватной действительности и лишь вследствие этого более удобной . Другое дело геометрия как элемент теории. Она может отражать метрические свойства реальных пространства и времени, а может и не отражать их, но быть геометрией некоего абстрактного пространства, с помощью которого в теории воссоздаются свойства материальных взаимодействий. В первом случае решается вопрос о ее истинности или ложности, во втором – о ее выгодности. Абсолютизация второго решения, сведение к нему проблемы взаимоотношения геометрии и реальности – следствие неправомерного отождествления абстрактного пространства и реальных пространства и времени (одного из проявлений того, что впоследствии получило название пифагорейского синдрома – отождествления

    тех или иных элементов математического аппарата теории с соответствующими элементами реальности, существующими до, вне и независимо от какой бы то ни было теории) .

    По существу, именно об этом пишет Эйнштейн в статье «Геометрия и опыт», отмечая, что подход Пуанкаре к проблеме взаимоотношения геометрии и физики исходит из того, что «о поведении реальных вещей геометрия (Г) ничего не говорит», в ней «непосредственная связь между геометрией и физической реальностью оказывается уничтоженной» . Все остальные суждения – о том, что «это поведение описывает только геометрия вместе с совокупностью физических законов (Ф)... что только сумма (Г)+(Ф) является предметом проверки на опыте», что «можно произвольно выбирать как (Г), так и отдельные части (Ф)» – как нетрудно понять, вытекают из этих исходных посылок. Однако обе они ложны. Геометрия реального пространства «говорит» о поведении реальных вещей, метрические свойства пространства и времени и свойства соответствующих материальных взаимодействий связаны друг с другом в объективной действительности. В физической теории по метрическим свойствам пространства и времени некоторой пространственно-временной области объективной действительности судят о соответствующих свойствах господствующих в этой области материальных взаимодействий, по геометрии судят о физике, по (Г) судят о (Ф).

    Однако процесс воссоздания свойств материальных взаимодействий по соответствующим метрическим свойствам пространства и времени – не экспериментальная, а чисто теоретическая процедура. Как чисто теоретическая процедура она в принципе не отличается от процесса воссоздания в теории этих же свойств материальных взаимодействий с помощью метрических свойств не реальных пространства и времени, а соответствующих подходящим образом организованных абстрактных пространств. Отсюда, с одной стороны, а) иллюзия о том, что только сумма (Г) и (Ф) является предметом проверки на опыте, что теоретик может произвольно выбирать геометрию как фон для изучения материальных взаимодействий; с другой стороны, б) рациональное зерно концепции взаимоотношения геометрии и физики Пуанкаре : геометрии как компоненты теории, с помощью которых теоретик воссоздает свойства материальных взаимодействий, действительно могут быть различными, и в этом смысле теория содержит в себе элемент конвенциональности.

    произвольно выбирать геометрию в теории, мы выбираем ее всегда таким образом, чтобы с помощью соответствующей геометрии (Г) воссоздать в теории свойства реальных взаимодействий (Ф). Во-вторых, потому, что вопрос о том, какая из геометрий, с помощью которых в теории воссоздаются свойства материальных взаимодействий, адекватно представляет в ней метрические свойства реальных пространства и времени, внутри теории решен быть не может; он выходит за пределы теории, в область эксперимента. И в этом все дело.

    Апелляция к идее «удивительной простоты» при ближайшем рассмотрении оказывается весьма сложным аргументом. Уж е Эйнштейн , критикуя принцип простоты Пуанкаре , который он использовал для обоснования выбора евклидовой геометрии при построении физической теории, отметил, что «существенно не то, что одна лишь геометрия устроена наиболее простым образом, а то, что наиболее простым образом устроена вся физика (в том числе геометрия)» .

    В статье Я.Б.Зельдовича и Л.П.Грищука «Тяготение, общая теория относительности и альтернативные теории» подчеркивается, что основной мотив, который привел Логунова к отрицанию эйнштейновского подхода к проблеме взаимоотношения геометрии и физики – независимо от субъективных намерений автора РТГ, – не столько физической, сколько психологической природы . Действительно, в основе критического подхода автора РТГ к ОТО лежит стремление остаться в рамках привычного (а тем самым и простого)

    стиля мышления. Но ведь жесткая связь привычного и простого, обоснование простоты привычным – это идеал психологического стиля мышления.

    Эволюция физики убедительно доказывает, что то, что является привычным и простым для одного поколения физиков, может быть непонятным и сложным для другого поколения. Гипотеза механического эфираяркий пример этого. Отказ от привычного и простого – неизбежный спутник расширения опыта, освоения новых областей природы и знания. Каждому крупному продвижению науки сопутствовали утрата привычного и простого, а затем – изменение самого представления о них. Короче, привычное и простое – категории исторические . Поэтому не сведение к привычному, а стремление понять реальность является высшей целью науки: «Наша постоянная цель – все лучшее и лучшее понимание реальности... Чем проще и фундаментальнее становятся наши допущения, тем сложнее математическое орудие нашего рассуждения; путь от теории к наблюдению становится длиннее, тоньше и сложнее. Хотя это и звучит парадоксально, но мы можем сказать: современная физика проще, чем старая физика, и поэтому она кажется более трудной и запутанной» .

    Главный недостаток психологического стиля мышления связан с игнорированием гносеологического аспекта научных проблем, в рамках которого только и возможно критическое отношение к интеллектуальным привычкам, исключающим четкое разделение происхождения и сущности научных представлений. Действительно, классическая механика предшествует квантовой механике и СТО, а последняя – возникновению ОТО. Но это еще не значит, что предшествующие теории превосходят последующие в ясности и отчетливости, как это предполагается в рамках психологического стиля мышления. С гносеологической точки зрения СТО и квантовая механика проще и понятнее классической механики, а ОТО проще и понятнее СТО. Вот почему «на научных семинарах... неясное место в каком-либо классическом вопросе вдруг кем-то иллюстрируется на хорошо знакомом квантовом примере, – и вопрос становится вполне «прозрачным» .

    Вот почему и «дебри римановой геометрии» приближают нас к адекватному пониманию физической реальности, в то время как «удивительной простоты пространство Минковского» отдаляет от него. Эйнштейн и Гильберт «вошли» в эти «дебри» и «затянули» в них «последующие поколения физиков» именно потому, что их интересовало не только и не столько то, насколько просты или сложны

    метрические свойства абстрактного пространства, с помощью которого можно описать в теории реальные пространство и время, сколько то, каковы метрические свойства этих последних. В конечном счете именно поэтому и Логунов вынужден прибегнуть к «эффективному» пространству римановой геометрии для описания гравитационных эффектов в дополнение к используемому в РТГ пространству Минковского, ибо лишь первое из этих двух пространств адекватно представляет в РТГ (так же, как и в ОТО) реальные пространство и время .

    Гносеологические промахи РТГ при философском подходе к ней легко обнаруживаются. Логунов пишет, что «даже обнаружив опытным путем риманову геометрию, не надо спешить делать вывод о структуре геометрии, которую необходимо положить в основу теории» . Это рассуждение аналогично рассуждению Пуанкаре : как основоположник конвенционализма настаивал на сохранении евклидовой геометрии независимо от результатов опытов, так и автор РТГ настаивает на сохранении заданной геометрии Минковского как основы всякой физической теории. Основанием такого подхода является в конечном счете пифагорейский синдром, онтологизация абстрактного пространства Минковского .

    Мы уже не говорим о том, что существование пространства-времени как вместилища событий, обладающего странной способностью вызывать инерциальные эффекты в материи, не подвергаясь обратному воздействию, становится при этом неизбежным постулатом. Такое представление по своей искусственности превосходит даже гипотезу механического эфира , на что мы уже обращали внимание выше, сравнивая классическую механику и СТО. Оно в принципе противоречит ОТО, так как «одно из достижений общей теории относительности, ускользнувшее, насколько известно, от внимания физиков», заключается в том, «что отдельное понятие пространства... становится излишним. В этой теории пространство – это не что иное как четырехмерность поля, а не что-то существующее само по себе» . Исходить при описании гравитации из геометрии Минковского и одновременно использовать риманову геометрию для Эйнштейна означает проявлять непоследовательность: «Оставаться при более узкой группе и одновременно брать более сложную структуру поля (ту же, как в общей теории относительности) означает наивную непоследовательность. Грех остается грехом, хотя бы его совершали мужи, в остальном почтенные» .

    ОТО, в которой по метрическим свойствам искривленного пространства-времени Римана воссоздаются свойства гравитационных взаимодействий, свободна от этих гносеологических неувязок: «Прекрасное

    изящество общей теории относительности... вытекает непосредственно из геометрической трактовки. Благодаря геометрическому обоснованию, теория получила определенную и нерушимую форму... Опыт либо ее подтверждает, либо опровергает... Интерпретируя гравитацию как действие силовых полей на вещество, определяют лишь весьма общую систему отсчета, а не единственную теорию. Можно построить множество общековариантных вариационных уравнений и... лишь наблюдения могут удалить такие нелепости как теорию гравитации, основанную на векторном и скалярном поле или на двух тензорных полях. В противоположность этому, в рамках геометрической трактовки Эйнштейна подобные теории оказываются абсурдными с самого начала. Они устраняются философскими аргументами, на которых основывается эта трактовка» . Психологическая уверенность в истинности ОТО основывается не на ностальгии по привычному стилю мышления, а на ее монистичности, целостности , замкнутости, логической последовательности и отсутствии гносеологических промахов, характерных для РТГ .

    Одним из основных гносеологических промахов РТГ является, по нашему глубокому убеждению, ее исходная гносеологическая установка, согласно которой внутритеоретических критериев достаточно для решения вопроса о том, какое из абстрактных пространств теории адекватно представляет в ней реальные пространство и время. Эта гносеологическая установка, несовместимая с той, которая лежит в основе ОТО, с легкой руки Гейзенберга , приписывается... Эйнштейну , который-де в беседе с ним весной 1926 г. в Берлине сформулировал ее в еще более общем виде как утверждение о том, что не эксперимент, а теория определяет, что поддается наблюдению .

    Между тем, как это ни покажется парадоксальным на первый взгляд, вопреки господствующему в научном сообществе мнению (в том числе и мнению самого Гейзенберга) Эйнштейн на самом деле говорил ему тогда не об этом, а совсем о другом. Воспроизведем соответствующее место из доклада «Встречи и беседы с Альбертом Эйнштейном » (сделанного Гейзенбергом 27 июля 1974 г. в Ульме), в котором Гейзенберг вспоминал об этой беседе с Эйнштейном , в ходе которой он возражал против сформулированного Гейзенбергом принципа наблюдаемости: «Каждое наблюдение, аргументировал он, предполагает однозначно фиксируемую нами связь между рассматриваемым нами явлением и возникающим в нашем сознании чувственным ощущением. Однако мы можем уверенно говорить об этой связи лишь при условии, что известны законы природы, которыми она определяется. Если же – что явно имеет место в современной атомной

    физике – сами законы ставятся под сомнение, то теряет свой ясный смысл также и понятие «наблюдение». В такой ситуации теория прежде всего должна определить, что поддается наблюдению» .

    Исходная гносеологическая установка РТГ Логунова – следствие сравнительно несложного паралогизма – отождествления необходимого условия адекватности теоретических структур объективной реальности с ее достаточным условием. Как нетрудно понять, в конечном счете именно этим объясняются логико-гносеологические ошибки, которые лежат в основе РТГ и ее противопоставления ОТО, – использование лишь внутритеоретических критериев в решении вопроса о том, какое из абстрактных пространств теории адекватно представляет в ней реальные пространство и время, и неправомерное отождествление его с ними, – по существу, те же самые логико-гносеологические ошибки, которые лежали в основе подхода Пуанкаре к проблеме взаимоотношения геометрии и физики .

    Что бы ни говорилось о подходе Эйнштейна к проблеме взаимоотношения геометрии и физики, выполненный нами анализ свидетельствует о том, что вопрос о возможностях этого подхода в формировании современной естественнонаучной парадигмы остается открытым. Он остается открытым до тех пор, пока не доказано

    существование таких свойств материальных явлений, которые никак не связаны со свойствами пространства и времени. И напротив, благоприятные перспективы подхода Эйнштейна обусловлены в конечном счете тем, что все более и более определенно обнаруживается связь метрических и топологических свойств пространства и времени с различными не пространственно-временными свойствами материальных явлений . В то же время историко-научный и философский анализ подхода Пуанкаре к проблеме взаимоотношения геометрии и физики приводит к выводу о его бесперспективности как альтернативы подходу Эйнштейна . Об этом же свидетельствует и анализ попыток его реанимации, предпринятых в работах Логунова с сотрудниками.

    Примечания


    Аронов Р.А. К проблеме пространства и времени в физике элементарных частиц // Философские проблемы физики элементарных частиц. М., 1963. С. 167; Он же . Проблема пространственно-временной структуры микромира // Философские вопросы квантовой физики. М., 1970. С. 226; Он же . К вопросу о логике микромира // Вопр. философии. 1970. № 2. С. 123; Он же . ОТО и физика микромира // Классическая и квантовая теория гравитации. Мн., 1976. С. 55; Aronov R.A . To the philosophical foundations of the superunifi cation program // Logic, Methodology and Philosophy of Science. Moscow, 1983. P. 91.

    См.: Аронов Р.А. К проблеме взаимоотношения пространства, времени и материи // Вопр. философии. 1978. № 9. С. 175; Он же. О методе геометризации в физике. Возможности и границы // Методы научного познания и физика. М., 1985. С. 341; Аронов Р.А., Князев В.Н . К проблеме взаимоотношения геометрии и физики // Диалектический материализм и философские вопросы естествознания. М., 1988. С. 3.

    См.: Аронов Р.А. Размышления о физике // Вопросы истории естествознания и техники. 1983. № 2. С. 176; Он же. Два подхода к оценке философских взглядов А.Пуанкаре // Диалектический материализм и философские вопросы естествознания. М., 1985. С. 3; Аронов Р.А., Шемякинский В.М. Философское обоснование программы геометризации физики // Диалектический материализм и философские вопросы естествознания. М., 1983. С. 3; Они же. Об основаниях геометризации физики // Философские проблемы современного естествознания. Киев, 1986. В. 61. С. 25.

    Гейзенберг В . Развитие понятий в физике ХХ века // Вопр. философии. 1975. № 1. С. 87.

    Публикации по теме

    • Последствия атомной войны Последствия атомной войны

      Массовый голод станет главным последствием любого локального ядерного конфликта на Земле. К такому выводу пришли исследователи из...

    • Краткий пересказ романа Ф Краткий пересказ романа Ф

      «Преступление и наказание» Пересказ Часть первая В 1865 г. бывший студент юридического факультета Родион Раскольников окончательно...