Применение поляризационного света в быту и технике. Практическое применение явления поляризации Примеры практического применения явления поляризации света

Двойное лучепреломление существует в естественно анизотропных телах. Однако существуют различные способы искусственной оптической анизотропии  сообщение оптической анизотропии естественно изотропным веществам.

5.1. Фотоупругость

Тело под влиянием механической деформации ста­новится оптически анизотропным. Например, при одностороннем сжатии или растяжении пластинка из прозрачного материала приобретает свойства одноосно­го кристалла, оптическая ось которого совпадает с направлением сжа­тия или растяжения. Разность показателей преломления обыкновенного и необыкновенного лучей в направлении, перпендикулярном оптической оси, пропорциональна нормальному напряжению σ


(8)

где χ 1  коэффициент, зависящий от свойств вещества; k  порядок интерференционной полосы;  напряжение.

5.2. Ячейка Керра

Возникновение двойного лучепреломления в газах, жидкостях и в аморфных твердых телах (диэлектриках) под воздействием сильного однородного электрического поля называется эффектом Керра . Это явление впервые было обнаружено шотландским физиком Д. Керром в 1875 году.

На пути l (длина пластины конденсатора) между обыкновенным и не­обыкновенным лучами возникает оптическая разность хода

где  2 – коэффициент пропорциональности; В – постоянная Керра, зависящая от природы вещества, его температуры и длины волны света в вакууме.

Эффект Керра объясняется различной поляризуемостью молекул вещества по различным направлениям. Это явление практически безинер­ционно, т.е. переход вещества из изотропного состояния в анизотроп­ное при включении поля происходит приблизительно за 10 -10 с. Поэтому ячейка Керра служит идеальным световым затвором и применяется в быстропротекающих процессах (в скоростной фото- и киносъемке и т.д.)

5.3. Вращение плоскости поляризации

Некоторыеоптически активные вещества обладают способностью вращать плоскость поляризации прохо­дя­щего через них плоско поляри­зо­ванного света. К ним относятся твер­дые тела (кварц, сахар, киноварь), чистые жидкости (ски­пидар, никотин, винная кислота) и растворы оптически активных веществ (сахар, спирт и т.д.).

Вращение плоскости поля­ри­зации можно наблюдать на сле­дующем опыте. Если между скре­щенными поляризатором и ана­лизатором поместить опти­чес­ки активное вещество, то по­ле зрения анализатора про­све­тля­ется. При повороте ана­ли­за­то­ра на угол φ можно вновь по­лу­­чить темное поле зрения. В растворах угол поворота плоскости поляризации пропорциона­лен пути света в растворе l и концентрации активного вещества С :

, (10)

где [φ 0 ]  удельное вращение.

Оптически активные вещества в зависимости от направления вра­щения плоскости поляризации подразделяются на правовращающие и левовращающие .

Явление вращения плоскости поляризации в растворах лежит в основе сертификации продуктов. Это явление используется, например, для точного определения концентрации растворов оптически активных веществ (поляриметрия ).

Оптически неактивные вещества приобретает способность вращать плоскость поляризации под действием магнитного поля. Это явление было обнаружено М. Фарадеем и получило название эффекта Фарадея . Этот эффект имеет огромное значение для науки, так как в нем об­наруживается связь между оптическими и электромагнитными процес­сами.

Гладкие поверхности некоторых объектов съемки, такие, как стекло, вода и различные окрашенные и полированные материалы, отражают как в зеркале изображения окружающих предметов. Например, стек­лянные витрины всегда отражают дома противоположной стороны улицы и небо. Эти зеркально отраженные изображения мешают видеть предметы, находящиеся позади стекла. Свет также поляризуется при рассеянии его атмос­ферой, водой и другими прозрачными средами и при прохождении через кристаллы, обладающие двойным преломлением лучей.

Чтобы избавиться от таких отражении, можно применить в некоторых случаях поляризационный светофильтр.

Поляризационный светофильтр представляет собой тонкую нитро- или ацетилцеллюлозную пленку, в которой расположены ультрамикроскопические кристаллы поляризующего вещества, ориентированные в одном и том же направлении. Для защиты от влаги и механических повреждений эту пленку вклеивают между двумя стеклянными пластинками. Такая кристаллическая решетка пропускает колебания световых лучей, которые совершаются только в одной плоскости.

Действие поляризационного светофильтра основано на волновой природе света, который при отражении и рассеянии поляризуется. Световые волны представляют собой электромагнитные колебания, совершающиеся перпендикулярно направлению распростране­ния луча. В обычном, неполяризованном пучке световых лучей колебания происходят во всех плоскостях, перпен­дикулярных направлению его распространения. Если колебания ограничены одной плоскостью, такой свет называют поляризованным .

Поскольку блики и отражения посылают в объектив поляризованный свет, а вся остальная поверхность снимаемых предметов - естественный, при съемке с поляризационным светофильтром блики и отражения устраняются, а изображение предметов в целом сохраняется.

Поляризационный светофильтр может быть с успехом применен и для затемнения неба при съемке пейзажей, причем он позволяет изменять степень затемнения в широких пределах. Затемнение неба может быть достигнуто и цветными компенсационными светофильтрами: желтыми, оранжевыми и красными, но такие светофильтры одновременно с затемнением неба изменяют контраст наземных предметов. Поляризационные светофильтры позволяют сохранить этот контраст.

Степень поляризации света при отражении существенно зависит от угла падения света на объект. Наибольшей силы она достигает при угле 30 - 40 . В этом случае действие поляризационного светофильтра достигает наибольшего эффекта, т. е. блики и отражения можно убрать полностью. Поляризационные светофильтры применяют также при съемках людей в очках.

3. Спектральный состав оптического излучения. Поток излучения и световой поток. Единицы излучения.

Оптическое излучение соответствует электромагнитным волнам с длиной волны от 1 нм до 1мм и состоит из трех областей: ультрафиолетовой (УФ), видимой и инфракрасной (ИК).

Ультрафиолетовая область оптического излучения лежит в пределах 1…380 нм. Международная комиссия по освещению (МКО) предложила следующее деление УФ-излучений с длинами волн от 100 нм до 400 нм: УФ-А - 315…400 нм; УФ-В - 280…315 нм; УФ-С -100…280 нм.

Видимое излучение (свет), попадая на сетчатую оболочку глаза, в результате осознанного превращения энергии внешнего раздражителя вызывает зрительное ощущение. Диапазон длин волн монохроматичеких составляющих данного излучения соответствует 380…780 нм.

Длины волн монохроматических составляющих инфракрасного излучения больше длин волн видимого излучения (но не более 1 мм). МКО предложила следующее деление области ИК-излучений: ИК-А - 780…1400 нм; ИК-В - 1400…3000 нм; ИК-С - 3000 нм (3 Мкм)…106 нм (1 мм).

Спектры источников света получаются при разложении их излучения по длинам волн (l) спектральными приборами и характеризуются функцией распределения энергии испускаемого света в зависимости от длины волны.

Монохроматическое излучение - это излучение одной частоты или длины волны. Излучение в интервале длин волн до 10 нм называется однородным. Совокупность монохроматических или однородных излучений образует спектр. С изменением длины волны монохроматического излучения меняется и его цветовое восприятие глазом.

При разложении призмой видимого (белого) света в непрерывный спектр в последнем цвета плавно переходят один в другой так, что точно определить границы каждого цвета и связать их с определенной длиной волны трудно. Но приблизительно они выглядят так:

фиолетовый - 380…440 нм;

синий - 440…480 нм;

голубой - 480…510 нм;

зеленый - 510…550 нм;

желто-зеленый - 550…575 нм;

желтый - 575…585 нм;

оранжевый - 585…620 нм;

красный - 620…780 нм.

Монохроматические излучения с длиной волны более 700 нм и менее 400 нм практически уже не воспринимаются глазом.

Различают сплошные (непрерывные), полосатые, линейчатые и смешанные спектры. Сплошными (непрерывными) спектрами называются такие, в которых монохроматические составляющие заполняют без разрывов интервал длин волн, в пределах которого происходит излучение. Такой спектр характерен для ламп накаливания и других тепловых излучателей. В полосатых спектрах монохроматические составляющие образуют дискретные группы (полосы) в виде множества близко расположенных линий. Линейчатые спектры состоят из отдельных, не примыкающих друг к другу монохроматических излучений, а смешанные содержат комбинацию спектров. Полосатые, линейчатые и смешанные спектры характерны для дуговых и газоразрядных источников света.Из всего спектра излучений источников света только видимый свет, воздействуя на светочувствительные элементы глаза, вызывает зрительное ощущение. Однородные видимые излучения, попадая в глаз, вызывают ощущение света определенного цвета.

Чувствительность глаза к излучениям различных длин волн неодинакова. Свойство глаза по-разному оценивать одинаковую лучистую энергию или мощность различных длин волн видимого спектра называется спектральной чувствительностью.

Особенность нашего зрения такова, что при равной мощности излучения всех длин волн видимого спектра мы лучше всего воспринимаем желто-зеленый цвет, т. е. излучение с длиной волны, равной 555 нм. Поэтому чувствительность глаза на этой длине волны принимается за единицу, а для остальных длин волн светового излучения она будет меньше единицы (при одинаковой мощности излучения).

    Формат mini DV .

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №5

Теперь пришло время поговорить о том, в чем заключается сущность поляризации света .

В самом общем смысле правильнее говорить о поляризации волн. Поляризация света, как явление, представляет собой частный случай поляризации волны. Ведь свет представляет собой электромагнитное излучение в диапазоне, воспринимаемом глазами человека.

Что такое поляризация света

Поляризация – это характеристика поперечных волн. Она описывает положение вектора колеблющейся величины в плоскости, перпендикулярной направлению распространения волны.

Если этой темы не было на лекциях в университете, то вы, вероятно, спросите: что это за колеблющаяся величина и какому направлению она перпендикулярна?

Как выглядит распространение света, если посмотреть на этот вопрос с точки зрения физики? Как, где и что колеблется, и куда при этом летит?

Свет – это электромагнитная волна, которая характеризуется векторами напряженности электрического поля E и вектором напряженности магнитного поля Н . Кстати, интересные факты о природе света можно узнать из нашей статьи.

Согласно теории Максвелла , световые волны поперечны. Это значит, что векторы E и H взаимно перпендикулярны и колеблются перпендикулярно вектору скорости распространения волны.

Поляризация наблюдается только на поперечных волнах.

Для описания поляризации света достаточно знать положение только одного из векторов. Обычно для этого рассматривается вектор E .

Если направления колебаний светового вектора каким-то образом упорядочены, свет называется поляризованным.

Возьмем свет на рисунке, который приведен выше. Он, безусловно, поляризован, так как вектор E колеблется в одной плоскости.

Если же вектор E колеблется в разных плоскостях с одинаковой вероятностью, то такой свет называется естественным.

Поляризация света по определению – это выделение из естественного света лучей с определенной ориентацией электрического вектора.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Откуда берется поляризованный свет?

Свет, который мы видим вокруг себя, чаще всего неполяризован. Свет от лампочек, солнечный свет – это свет, в котором вектор напряженности колеблется во всех возможных направлениях. Но если вам по роду деятельности приходится весь день смотреть в ЖК-монитор, знайте: вы видите поляризованный свет.

Чтобы наблюдать явление поляризации света, нужно пропустить естественный свет через анизотропную среду, которая называется поляризатором и «отсекает» ненужные направления колебаний, оставляя какое-то одно.

Анизотропная среда – среда, имеющая разные свойства в зависимости от направления внутри этой среды.

В качестве поляризаторов используются кристаллы. Один из природных кристаллов, часто и давно применяемых в опытах по изучению поляризации света - турмалин .

Еще один способ получения поляризованного света - отражение от диэлектрика. Когда свет падает на границу раздела двух сред, луч разделяется на отраженный и преломленный. При этом лучи являются частично поляризованными, а степень их поляризации зависит от угла падения.

Связь между углом падения и степенью поляризации света выражается законом Брюстера .

Когда свет падает на границу раздела под углом, тангенс которого равняется относительному показателю преломления двух сред, отраженный луч является линейно поляризованным, а преломленный луч поляризован частично с преобладанием колебаний, лежащих в плоскости падения луча.

Линейно поляризованный свет - свет, который поляризован так, что вектор E колеблется только в одной определенной плоскости.

Практическое применение явления поляризации света

Поляризация света – не просто явление, которое интересно изучать. Оно широко применяется на практике.

Пример, с которым знакомы почти все – 3D-кинематограф. Еще один пример – поляризационные очки, в которых не видно бликов солнца на воде, а свет фар встречных машин не слепит водителя. Поляризационные фильтры применяются в фототехнике, а поляризация волн используется для передачи сигналов между антеннами космических аппаратов.

Поляризация - не самое сложное для понимания природное явление. Хотя если копнуть глубоко и начать основательно разбираться с физическими законами, которым она подчиняется, могут возникнуть сложности.

Чтобы не терять время и преодолеть трудности максимально быстро, обратитесь за советом и помощью к нашим авторам . Мы поможем выполнить реферат, лабораторную работу, решить контрольные задания на тему "поляризация света".

Введение

На современном этапе развития медицинской техники ввиду широкого спектра применения различных видов излучения для диагностики и лечения заболеваний представляется актуальной необходимость использования компьютерных программ и пакетов для упрощения представления информации о физических параметрах излучения и его применении в той или иной области.

Применение поляризационного света в медицине разнообразно. Поляризационные приборы основаны на явлении поляризации света и предназначены для изучения тех или иных процессов, происходящих в поляризованных лучах.

В настоящее время использование поляризационного света активно применяется в различных сферах медицины для диагностики, лечения и профилактики широкого спектра заболеваний. Поляризационный свет также широко используется в фототерапии, он оказывает комплексное оздоравливающее воздействие на организм человека: способствует улучшению микроциркуляции, улучшает состояние кожи, укрепляет иммунитет, способствует заживлению ран и снятию боли.

Целью данной работы является создание информационной справочной системы по использованию поляризационного света в медицине. Программа предназначена для наглядного и простого представления информации о применении данного вида излучения в медицинских целях, о поляризационной лампе, ее основных характеристиках, правилах использования прибора.

Результатом данной курсовой работы является программа, удобная и понятная в использовании обычному пользователю, предназначенная для ознакомления как с общим применением поляризационного света в медицине, так и конкретно с использованием поляризационной лампы.

Теоретическая часть

Использование поляризационного света

Поляризация волн - характеристика поперечных волн, описывающая поведение вектора колеблющейся величины в плоскости, перпендикулярной направлению распространения волны.

Свет называется линейно поляризованным (иногда плоско поляризованным), если вектор электрического поля колеблется по прямой линии. Когда вектор электрического поля описывает эллипс, говорят об эллиптической поляризации. Если же электрический вектор описывает окружность, мы имеем круговую поляризацию.

Поляризованный свет используют следующим образом.

методы физических исследований, основаны на измерении степени поляризации света и угла поворота плоскости поляризации света при прохождении его через оптически активные вещества. Угол поворота в растворах зависит от их концентрации; поэтому поляриметрия широко применяется для измерения концентрации оптически активных веществ.

Методы исследования излучения, основанные на измерении:

· степени поляризации излучения (света, радиоволн)

· оптической активности веществ или их растворов

поляризованным светом - лечебное применение видимого и инфракрасного излучения интегрального спектра, который формируется с помощью специальных источников с отражением света в поляризаторе Брюстера, что приводит к поляризации оптического излучения в достаточно широком спектре.

Использование лазеров

В настоящее время трудно представить прогресс в медицине без лазерных технологий, которые открыли новые возможности в разрешении многочисленных медицинских проблем.

Развитие лазерной медицины идет по трем основным направлениям:

· лазерная хирургия;

· лазерная терапия;

· лазерная диагностика.

Описание поляризационной лампы

Изобретение относится к излучающей поляризованный свет лечебной лампе для биостимуляции поляризованным светом. В частности, изобретение относится к лечебной лампе, которая излучает поляризованный свет с определенными интенсивностью и длиной волны, и облучает при этом определенную область поверхности.

В патенте ФРГ N3220218 описано общее биостимулирующее действие поляризованного света.

Данный прибор содержит:

Он содержит три следующие друг за другом и непосредственно присоединенные друг к другу части, которые ограничивают общее внутреннее пространство, причем первая часть в основном является рукояткой трубчатой формы, имеющей ось, вторая часть является соединенной на одном своем конце с рукояткой изогнутой средней частью, и третья часть является соединенной с другим концом средней части цилиндрической передней частью (рис.1).

Рисунок 1

Блок питания.

Позволяет трансформировать напряжение питающей сети в напряжение питания галогенной лампы. Он так же содержит вентилятор (см. рис.2), необходимый для вывода тепла с прибора, через воздушный канал и специальные отверстия в корпусе прибора.

Рисунок 2

Который необходим для контроля длительности процедуры. Располагается вместе с кнопкой вкл/выкл на небольшой плате для удобства конструкции (рис.3).

Рисунок 3

Галогенная лампа (источник световых колебаний).

Она содержит расположенный непосредственно позади нее рефлектор (рис.4), позволяющий фокусировать световой поток в определенном направлении, а так же расположенную в потоке излучаемого лампой света оптическую систему, содержащую поляризатор, который является поляризатором Брюстера.

Рисунок 4

Поляризатор Брюстера (оптическая система).

Рисунок 5

Светофильтр.

Согласно предпочтительному варианту выполнения изобретения светофильтр (рис.6) закрывает второй полую трубку-цилиндр. Вследствие этого она герметично закрывается с возможностью пропускания света, и защитой от проникновения пыли.

Многие люди считают световую поляризацию феноменальным явлением, которое имеет широкое распространение и применение в технике и практически никогда не встречается в повседневной жизни. На самом деле такое утверждение является не совсем корректным, что было доказано в статье нидерландского физика Г. Кеннена.

Общее понятие

С научной точки зрения, поляризация света - это ориентированность в пространстве световых колебаний, являющихся перпендикулярными относительно направления движения волны. Световой луч состоит из множества простейших элементов, которые называются квантами. Направление их колебаний может быть самым разнообразным. В том случае, когда кванты отличаются идентичной ориентацией, световой поток называется поляризованным. В зависимости от доли таких частиц в том или ином излучении меняется степень поляризации.

Фильтры

Существует ряд фильтров, которые способны пропускать лишь лучи с определённой ориентацией. Если смотреть через них на поляризованный световой поток и одновременно поворачивать, будет меняться яркость. В том случае, когда поляризация света будет совпадать с направлением пропускания, она станет максимальной, а при полном расхождении - минимальной. Приобрести такие фильтры можно в обычных магазинах, специализирующихся на продаже фототехники. При взгляде через них на чистое небо, при условии что Солнце находится сбоку, в определенный момент во время поворачивания станет видна полоса чёрного цвета. Она является доказательством того, что исходящие от этого участка неба световые волны являются поляризованными.

Фигура Гайдингера

В своё время, известный физик из СССР С. И. Вавилов провёл исследования, по результатам которых выдвинул интересную теорию. Согласно ей, поляризация света видна без каких-либо вспомогательных устройств примерно каждому четвёртому человеку на планете. При этом большинство из этих людей даже не подозревают о наличии такой особенности у собственного зрения. При взгляде на то же голубое небо в центре их поля зрения появляется едва заметная жёлтая полоска со слегка закруглёнными концами. Посередине и на краях также есть бледные пятнышки голубоватого цвета. При поворачивании плоскости поляризации полоса также поворачивается, ведь относительно направления световых колебаний она всегда является перпендикулярной. В науке это явление известно как фигура Гайдингера. Она названа в честь немецкого физика, который открыл ее в 1845 году. Если хоть раз её заметить, способность видеть это пятнышко можно развивать. Следует отметить, что при использовании синего либо зелёного светофильтра фигура Гайдингера видна довольно чётко.

Примеры поляризации света и способ её устранения

Поляризация света, источником которого является чистое небо, - это лишь самый простой и широко использующийся пример этого явления. Другими довольно распространёнными случаями можно назвать блики, что лежат на стеклянных витринах и поверхности воды. При необходимости устранить их можно при помощи специальных поляроидных фильтров, которыми чаще всего пользуются фотографы. Они становятся незаменимыми, если нужно запечатлеть на фото какие-либо защищённые стеклом картины либо музейные экспонаты. Принцип их действия основан на том факте, что любой отражённый свет в зависимости от угла своего падения имеет ту или иную степень поляризации. Таким образом, при взгляде на блик можно без труда подобрать такой угол расположения фильтра, при котором он будет подавлен, вплоть до полного исчезновения. Аналогичного принципа придерживаются производители качественных противосолнечных очков. Благодаря использованию в их стекле поляроидных фильтров можно убрать мешающие блики, исходящие от поверхности мокрого шоссе либо морской поверхности.

Закон Умова

Любой рассеянный свет с неба представляет собой солнечные лучи, которые претерпели многочисленные отражения от молекул воздуха, а также не раз переломились в ледяных кристаллах либо каплях воды. Вместе с этим, процесс поляризации характерен не только для направленного отражения (к примеру, от воды), но и для диффузного. В 1905 году было доказано, что чем темнее поверхность, от которой отражается световая волна, тем большей является степень поляризации. В историю это вошло, как закон Умова, названный в честь физика, которому удалось доказать эту зависимость. Если рассмотреть её на элементарном примере с асфальтным шоссе, то получается, что во влажном состоянии оно является более поляризованным, чем в сухом виде.

Применение в истории

Несмотря на то что впервые явление поляризации было открыто в 1871 году учёным удалось подробно его объяснить лишь в средине прошлого века. Как бы там ни было, есть исторические сведения, что оно использовалось викингами-моряками для навигации более одной тысячи лет тому назад. В большинстве случаев главным ориентиром для них служило солнце. Однако в облачную погоду они пользовались так называемым солнечным камнем. Есть все основания предполагать, что он представлял собой некий прозрачный минерал, что имел поляризационные свойства. Ориентиром при этом являлась появляющаяся на небе более тёмная полоса. Чтобы доказать предположение историков и действенность такого рода навигации, некоторое время назад норвежский лётчик совершил полёт на небольшом самолёте из родной страны в Гренландию, используя в виде ориентира лишь кристалл кордиерита - минерала с аналогичными солнечному камню характеристиками.

Поляризация и насекомые

Поляризация света видна многим насекомым. Особенно это касается пчёл и муравьёв, которые в облачную погоду благодаря такой своей особенности могут ориентироваться на местности и без труда возвращаться в места обитания. Такая способность достигается за счет строения зрительной системы. В то время как в глазе человека и любого другого млекопитающего животного светочувствительные молекулы располагаются беспорядочно, у насекомых они ориентированы в одном направлении и лежат в аккуратных рядах.

Поляризация некоторых оптических явлений и небесных объектов

Поляризационные эффекты характерны и для таких интересных природных явлений, как гало (светящиеся дуги, которые время от времени появляются вокруг солнца либо луны), радуга и отдельные виды полярного сияния. Это связано с тем, что во всех указанных случаях одновременно происходит отражение света и его преломление. Другими словами, если вращать фильтр и смотреть сквозь него на радугу, в определённый момент она станет практически невидимой. Что касается поляризации некоторых астрономических тел, то самым ярким её примером стала крабовидная туманность, которая наблюдается в созвездии Тельца. Дело в том, что испускаемые ею световые излучения возникают во время торможения магнитным полем стремительно летящих электронов.

Круговая поляризация

Некоторые из разновидностей жуков, спинки которых обладают металлическим блеском, способны отражать лучи и направлять их по кругу. Это явление так и называется - круговая поляризация света. Если рассмотреть через фильтр металлический отблеск от спинок этих насекомых, то можно увидеть, что он всегда закручен в левую сторону. До нашего времени учёным так и не удалось объяснить, в чём заключается биологический смысл данного явления.

Публикации по теме