Методы решения уравнений в целых числах. Уравнения с двумя переменными (неопределенные уравнения)

С опушки леса в чащу ведет множество тропинок. Они извилисты, они сходятся, расходятся вновь и снова пересекаются одна с другой. На прогулке можно только заметить обилие этих тропинок, походить по некоторым из них и проследить их направление в глубь леса. Для серьезного изучения леса нужно идти по тропинкам, пока они вообще различимы среди сухой хвои и кустарников.

Поэтому мне захотелось написать проект, который можно рассматривать как описание одной из возможных прогулок по опушке современной математики.

Окружающий мир, потребности народного хозяйства, а зачастую, и повседневные хлопоты ставят перед человеком все новые и новые задачи, решение которых не всегда очевидно. Порою тот или иной вопрос имеет под собой множество вариантов ответа, из-за чего происходят затруднения в решении поставленных задач. Как выбрать правильный и оптимальный вариант?

С этим же вопросом напрямую связано решение неопределенных уравнений. Такие уравнения, содержащие две или более переменных, для которых требуется найти все целые или натуральные решения, рассматривались еще в глубокой древности. Например, греческий математик Пифагор (IV век до н. э.). александрийский математик Диофант (II-III век н. э.) и лучшие математики более близкой нам эпохи - П. Ферма (XVII век), Л. Эйлер (XVIII век), Ж. Л. Лагранж (XVIII век) и другие.

Участвуя в Российском заочном конкурсе > г. Обнинска, Международном конкурсе - игре > и олимпиаде Уральского Федерального округа часто сталкиваюсь с такими задачами. Это связано с тем, что их решение носит творческий характер. Проблемы, возникающие при решении уравнений в целых числах, вызваны как сложностью, так и тем, что в школе им уделяется мало времени.

Диофант представляет одну из наиболее трудных загадок в истории науки. Нам не известно ни время, когда он жил, ни предшественники, которые работали бы в той же области. Труды его подобны сверкающему огню среди непроницаемой тьмы.

Промежуток времени, когда мог жить Диофант, составляют полтысячелетия! Нижняя грань определяется без труда: в своей книге о многоугольных числах Диофант неоднократно упоминает математика Гипсикла Александрийского который жил в середине 2-ого в. до н. э.

С другой стороны, в комментариях Теона Александрийского к > знаменитого астронома Птолемея помещен отрывок из сочинения Диофанта. Теон жил в середине 4-ого в. н. э. Этим определяется верхняя грань этого промежутка. Итак, 500 лет!

Французский историк науки Поль Таннри, издатель наиболее полного текста Диофанта, попытался сузить этот промежуток. В библиотеке Эскуриала он нашел отрывки из письма Михаила Пселла, византийского ученого Х1 в. , где говорится, что ученейший Анатолий после того как собрал наиболее существенные части этой науки речь идет о введении степеней неизвестного и об их (обозначении), посвятил их своему другу Диофанту. Анатолий Александрийский действительно составил >, отрывки которой приводят в дошедшей до нас сочинений Ямблих и Евсений. Но Анатолий жил в Александрии в середине 111-го в до н. э и даже более точно - до 270 года, когда он стал епископом Лаодакийским. Значит, его дружба с Диофантом, которого все называют Александрийским, должна была иметь место до этого. Итак, если знаменитый Александрийский математик и друг Анатолия по имени Диофант составляют одно лицо, то время жизни Диофанта - середина 111-го века нашей эры.

Зато место жительства Диофанта хорошо известно - Александрия, центр научной мысли и эллинистического мира.

До наших времен дошла одна из эпиграмм Палатинской Антологии:

Прах Диофанта гробница покоит: дивись ей - и камень

Мудрым искусством его скажет усопшего век.

Волей богов шестую часть жизни он прожил ребенком

И половину шестой встретил с пушком на щеках.

Только минула седьмая, с подругою он обручился.

С нею пять лет проведя, сына дождался мудрец.

Только полжизни отцовской возлюбленный сын его прожил.

Отнят он был у отца ранней могилой своей.

Дважды два года родитель оплакивал тяжкое горе.

Тут и увидел предел жизни печальной своей.

Используя современные методы решения уравнений можно сосчитать, сколько лет прожил Диофант.

Пусть Диофант прожил x лет. Составим и решим уравнение:

Умножим уравнение на 84, чтобы избавиться от дробей:

Таким образом, Диофант прожил 84 года.

Наиболее загадочным представляется творчество Диофанта. До нас дошло шесть из тринадцати книг, которые были объединены в >, стиль и содержание этих книг резко отличаются от классических античных сочинений по теории чисел и алгебры, образцы которых мы знаем по > Евклида, его >, леммам из сочинений Архимеда и Аполлония. >, несомненно, явилась результатом многочисленных исследований, которые остались совершенно неизвестными.

Мы можем только гадать о её корнях, и изумляться богатству и красоте её методов и результатов.

> Диофанта это сборник задач (всего 189), каждая из которых снабжена решением. Задачи в ней тщательно подобраны и служат для иллюстрации вполне определенных, строго продуманных методах. Как это было принято в древности, методы не формулируются в общем виде, а повторяются для решения однотипных задач.

Достоверно известно своеобразное жизнеописание Диофанта, которое по преданию было высечено на его надгробии и представляло задачу-головоломку:

Эта головоломка служит примером тех задач, которые решал Диофант. Он специализировался на решении задач в целых числах. Такие задачи в настоящее время известны под названием диофантовых.

Исследования диофантовых уравнений обычно связано с большими трудностями.

В 1900 году на всемирном конгрессе математиков в Париже один из крупнейших математиков мира Давид Гильберт выделил 23 проблемы из различных областей математики. Одной из этих проблем была проблема решения диофантовых уравнений. В проблеме заключалось следующее: можно ли разрешить уравнение с произвольным числом неизвестных и целыми коэффициентами, определённым способом - с помощью алгоритма. Задача состоит в следующем: для заданного уравнения надо найти все целые или натуральные значения переменных, входящих в уравнение, при которых оно превращается в истинное равенство. Диофант придумал для таких уравнений много разнообразных приёмов решения. Ввиду бесконечного разнообразия диофантовых уравнений общего алгоритма для их решения не существует, и практически для каждого уравнения приходится изобретать индивидуальный приём.

Диофантовым уравнением 1-ой степени или линейным диофантовым уравнением с двумя неизвестными называется уравнение вида: ax+by=c, где a,b,c-целые, НОД(a,b)=1.

Приведу формулировки теорем, на основании которых может быть составлен алгоритм решения неопределенных уравнений первой степени от двух переменных в целых числах.

Теорема 1. Если в уравнении, то уравнение имеет, по крайней мере, одно решение.

Доказательство:

Можно считать, что а >0. Решив уравнение относительно х, получим: х=с-вуа. Докажу, что если в эту формулу вместо у подставлять все натуральные числа, меньшие а и 0, т. е. числа 0;1;2;3;. ;а-1, и каждый раз совершать деление, то все а остатков будут различны. Действительно, подставлю вместо у числа m1 и m2, меньшие а. В результате получу две дроби: с-вm1а и с-вm2а. Выполнив деление и обозначив неполные частные через q1и q2, а остатки через r1 и r2, найду с-вm1а=q1+ r1а, с-вm2а= q2+ r2а.

Предположу, что остатки r1 и r2 равны. Тогда вычитая из первого равенства второе получу: с-вm1а- с-вm2а= q1-q2, или в(m1 - m2)а=q1-q2.

Т. к. q1-q2 - целое число, то и левая часть должна быть целой. Стало быть, вm1 - m2 должно делиться на а, т. е. разность двух натуральных чисел, каждое из которых меньше а, должна делиться на а, что невозможно. Значит, остатки r1 и r2 равны. Т. е. все остатки различны.

Т. о. я получила а различных остатков, меньших а. Но различные а натуральных чисел, не превосходящие а - это числа, 0;1;2;3;. ;а-1. Следовательно, среди остатков непременно найдется один и только один, равный нулю. Значение у, подстановка которого в выражение (с-ву)а дает остаток 0, и превращает х=(с-ву)а в целое число. Что и требовалось доказать.

Теорема 2. Если в уравнении, и с не делится на, то уравнение целых решений не имеет.

Доказательство:

Пусть d=НОД(а;в), так, что а=md, b=nd, где m и n- целые числа. Тогда уравнение примет вид: mdх+ ndу=с, или d(mх+ nу)=с.

Допустив, что существуют целые числа х и у, удовлетворяющие уравнению, получаю, что коэффициент с делится на d. Полученное противоречие доказывает теорему.

Теорема 3. Если в уравнении, и, то оно равносильно уравнению, в котором.

Теорема 4. Если в уравнении, то все целые решения этого уравнения заключены в формулах:

где х0, у0 - целое решение уравнения, - любое целое число.

Сформулированные теоремы позволяют составить следующий алгоритм решения в целых числах уравнения вида.

1. Найти наибольший общий делитель чисел a и b, если и с не делится на, то уравнение целых решений не имеет; если и, то

2. Разделить почленно уравнение на, получив при этом уравнение, в котором.

3. Найти целое решение (х0, у0) уравнения путем представления 1 как линейной комбинации чисел и;

4. Составить общую формулу целых решений данного уравнения где х0, у0 - целое решение уравнения, - любое целое число.

2. 1 МЕТОД СПУСКА

Многие > основаны на методах решения неопределенных уравнений. Например, фокус с угадыванием даты рождения.

Предложите Вашему знакомому угадать его день рождения по сумме чисел равных произведению даты его рождения на 12 и номера месяца рождения на 31.

Для того чтобы угадать день рождения Вашего знакомого нужно решить уравнение: 12х + 31y = А.

Пусть Вам назвали число 380, т. е. имеем уравнение 12х + 31y = 380. Для того чтобы найти х и y можно рассуждать так: число 12х + 24y делится на 12, следовательно, по свойствам делимости (теорема 4. 4), числа 7y и 380 должны иметь одинаковые остатки при делении на 12. Число 380 при делении на 12 дает остаток 8, следовательно 7y при делении на 12 тоже должно давать в остатке 8, а так как y - это номер месяца, то 1

Уравнение, которое мы решили, является диофантовым уравнением 1-ой степени с двумя неизвестными. Для решения таких уравнений может быть использован, так называемый метод спуска. Алгоритм этого метода рассмотрю на конкретном уравнении 5x + 8y = 39.

1. Выберу неизвестное, имеющее наименьший коэффициент (в нашем случае это х), и выражу его через другое неизвестное:. Выделю целую часть:. Очевидно, что х будет целым, если выражение окажется целым, что, в свою очередь, будет иметь место тогда, когда число 4 - 3y без остатка делится на 5.

2. Введу дополнительную целочисленную переменную z следующим образом: 4 - 3y = 5z. В результате получу уравнение такого же типа, как и первоначальное, но уже с меньшими коэффициентами. Решать его буду уже относительно переменной y:. Выделяя целую часть, получу:

Рассуждая аналогично предыдущему, ввожу новую переменную u: 3u = 1 - 2z.

3. Выражу неизвестную с наименьшим коэффициентом, в этом случае переменную z: =. Требуя, чтобы было целым, получу: 1 - u = 2v, откуда u = 1 - 2v. Дробей больше нет, спуск закончен.

4. Теперь необходимо >. Выражу через переменную v сначала z, потом y и затем x: z = = = 3v - 1; = 3 - 5v.

5. Формулы x = 3+8v и y = 3 - 5v, где v - произвольное целое число, представляют общее решение исходного уравнения в целых числах.

Замечание. Таким образом, метод спуска предполагает сначала последовательное выражение одной переменой чрез другую, пока в представлении переменной не останется дробей, а затем, последовательное > по цепочке равенств для получения общего решения уравнения.

2. 2 МЕТОД ПЕРЕБОРА

В клетке сидят кролики и фазаны, всего у них 18 ног. Узнать, сколько в клетке тех и других?

Составлю уравнение с двумя неизвестными, в котором х - число кроликов, а у - число фазанов:

4х + 2у = 18, или 2х + у = 9.

Ответ. 1)1 кролик и 7 фазанов; 2) 2 кролика и 5 фазанов; 3) 3 кролика и 3 фазана; 4) 4 кролика и 1 фазан.

1. ПРАКТИЧЕСКАЯ ЧАСТЬ

3. 1 Решение линейных уравнений с двумя неизвестными

1. Решить уравнение 407х - 2816y = 33 в целых числах.

Воспользуюсь составленным алгоритмом.

1. Используя алгоритм Евклида, найду наибольший общий делитель чисел 407 и 2816:

2816 = 407·6 + 374;

407 = 374·1 + 33;

374 = 33·11 + 11;

Следовательно (407,2816) = 11, причем 33 делится на 11.

2. Разделю обе части первоначального уравнения на 11, получим уравнение 37х - 256y = 3, причем (37, 256) = 1

3. С помощью алгоритма Евклида найду линейное представление числа 1 через числа 37 и 256.

256 = 37·6 + 34;

Выражу 1 из последнего равенства, затем последовательно поднимаясь по равенствам буду выражать 3; 34 и полученные выражения подставлю в выражение для 1.

1 = 34 - 3·11 = 34 - (37 - 34·1) ·11 = 34·12 - 37·11 = (256 - 37·6) ·12 - 37·11 =

83·37 - 256·(- 12)

Таким образом, 37·(- 83) - 256·(- 12) = 1, следовательно пара чисел х0 = - 83 и у0 = - 12 есть решение уравнения 37х - 256y = 3.

4. Запишу общую формулу решений первоначального уравнения где t - любое целое число.

Ответ. (-83c+bt; -12с-at), t є Z.

Замечание. Можно доказать, что если пара (х1,y1) - целое решение уравнения, где, то все целые решения этого уравнения находятся по формулам: х=х1+bty=y1-at

2. Решить уравнение 14x - 33y=32 в целых числах.

Решение: x = (32 + 33y) : 14

(14 [. ] 2+ 5)y + (14 [. ] 2 + 4) = 14 [. ] 2y + 5y + 14[. ] 2 + 4 = 14(2y + 2) + 5y + 4; 2y + 2 = p; p є Z

Перебор от 1 до 13

При y = 2; (5 [. ] 2 + 4): 14

Подставлю в исходное уравнение y = 2

14x = 32 +33 [. ] 2

14x = 32 + 66 x = 98: 14 = 7

Найду все целые решения по найденному частному:

14(x - 7) + 98 - 33 (y -2) - 66 = 32

14(x - 7) - 33(y - 2)=0

14(x - 7) = 33(y - 2) -> 14(x - 7) : 33 -> (x - 7): 33 -> x = 33k + 7; k є Z

Подставлю в исходное уравнение:

14(33k + 7) - 33y = 32

14. 33k + 98 - 33y = 32 y = 14k + 2; x = 33k + 7, где k є Z. Эти формулы задают общее решение исходного уравнения.

Ответ. (33k + 7; 14k + 2), k є Z.

3. Решить уравнение x - 3y = 15 в целых числах.

Найду НОД(1,3)=1

Определю частное решение: x=(15+3y):1 используя метод перебора, нахожу значение y=0 тогда x=(15+3 [. ] 0) =15

(15; 0) - частное решение.

Все остальные решения находятся по формулам: x=3k + 15, k є Z y=1k+0=k, k є Z при k=0, получаю частное решение (15;0)

Ответ: (3k+15; k), k є Z.

4. Решить уравнение 7x - y = 3в целых числах.

Найду НОД(7; -1)=1

Определю частное решение: x = (3+y):7

Используя метод перебора, находим значение y є y = 4, x = 1

Значит, (1;4) - частное решение.

Все остальные решения нахожу по формулам: x = 1k + 1, k є Z y = 7k + 4, k є Z

Ответ: (k+1;7k+4); k є Z.

5. Решить уравнение 15x+11 y = 14 целых числах.

Найду НОД(15; -14)=1

Определю частное решение: x = (14 - 11y):15

Используя метод перебора, нахожу значение y є y = 4, x = -2

(-2;4) - частное решение.

Все остальные решения нахожу по формулам: x = -11k - 2, k є Z y =15k + 4, k є Z

Ответ: (-11k-2; 15k+4); k є Z.

6. Решить уравнение 3x - 2y = 12 целых числах.

Найду НОД(3; 2)=1

Определю частное решение: x = (12+2y):3

Используя метод перебора, нахожу значение y є y = 0, x = 4

(4;0) - частное решение.

Все остальные решения нахожу по формулам: x = 2k + 4, k є Z y = 3k, k є Z

Ответ: (2k+4; 3k); k є Z.

7. Решите в целых числах уравнение xy = x + y.

Имею ху - х - у + 1 = 1 или (х - 1)(у - 1) = 1

Поэтому х - 1 = 1, у - 1 = 1, откуда х = 2, у = 2 или х - 1 = - 1, у - 1 = - 1, откуда х = 0, у = 0 других решений в целых числах данное уравнение не имеет.

Ответ. 0;0;(2;2).

8. Решите в целых числах уравнение 60х - 77у = 1.

Разрешу это уравнение относительно х: х = (77у + 1) / 60 = (60у + (17у +1)) / 60 = у + (17у + 1) / 60.

Пусть (17у + 1) / 60 = z, тогда у = (60z - 1) / 17 = 3z + (9z - 1) / 17. Если обозначить (9z - 1) / 17 через t, то z = (17t + 1) / 9 = 2t + (- t + 1) / 9. Наконец, пусть (- t + 1) / 9 = n, тогда t = 1- 9n. Так как я нахожу только целые решения уравнения, то z, t, n должны быть целыми числами.

Таким образом, z = 2 - 18n + 2 = 2 - 17n, а поэтому у = 6 - 51n + 1 - 9n = 7 - 60n, х = 2 - 17n +7 - 60n = 9 - 77n. Итак, если х и у - целые решения данного уравнения, то найдется такое целое число n, что х = 9 - 77n, y = 7 - 60n. Обратно если у = 9 - 77n, х = 7 - 60n, то, очевидно, х, у - целые. Проверка показывает, что они удовлетворяют исходному уравнению.

Ответ. (9 - 77n; 7 - 60n)); n є Z.

9. Решить уравнение 2x+11y =24 в целых числах.

Найду НОД(2; 11)=1

Определю частное решение: x = (24-11y):2

Используя метод перебора, нахожу значение y є y = 0, x = 12

(12;0) - частное решение.

Все остальные решения нахожу по формулам: x = -11k + 12, k є Z y = 2k + 0=2k, k є Z

Ответ:(-11k+12; 2k); k є Z.

10. Решить уравнение 19x - 7y = 100 в целых числах.

Найду НОД(19; -7)=1

Определю частное решение: x = (100+7y):19

Используя метод перебора, нахожу значение y є y = 2, x = 6

(6;2) - частное решение.

Все остальные решения нахожу по формулам: x = 7k + 6, k є Z y = 19k + 2, k є Z

Ответ:(7k+6; 19k+2); kє Z.

11. Решить уравнение 24x - 6y = 144 в целых числах

Найду НОД(24; 6)=3.

Уравнение не имеет решений, потому что НОД(24; 6)!=1.

Ответ. Решений нет.

12. Решить уравнение в целых числах.

Преобразую отношение коэффициентов при неизвестных.

Прежде всего, выделю целую часть неправильной дроби;

Правильную дробь заменю равной ей дробью.

Тогда получу.

Проделаю такие же преобразования с полученной в знаменателе неправильной дробью.

Теперь исходная дробь примет вид:

Повторяя те же рассуждения для дроби,получаю.

Выделяя целую часть неправильной дроби, приду к окончательному результату:

Я получила выражение, которое называется конечной цепной или непрерывной дробью. Отбросив последнее звено этой цепной дроби - одну пятую, превращу получающуюся при этом новую цепную дробь в простую и вычту ее из исходной дроби.

Приведу полученное выражение к общему знаменателю и отброшу его, тогда

Из сопоставления полученного равенства с уравнением следует, что, будет решением этого уравнения и согласно теореме все его решения будут содержаться в,.

Ответ. (9+52t; 22+127t), t є Z.

Полученный результат наводит на мысль о том, что и в общем случае для нахождения решения уравнения надо разложить отношение коэффициентов при неизвестных в цепyую дробь, отбросить ее последнее звено и проделать выкладки, подобные тем, которые были проведены выше.

13. Решить уравнение 3ху + 2х + 3у = 0 в целых числах.

3ху + 2х + 3у =3ху + 2х + 3у + 2 - 2 = 3у(х + 1) + 2(х + 1) - 2 =

=(х + 1)(3у + 2) - 2,

(х + 1)(3у + 2) = 2,

3у + 2 = 1 или 3у + 1 = 2 или 3у + 1 = -1 или 3у + 1 = -2 х + 1 = 2, х + 1 =1, х + 1 = -2, х + 1 = -1; х = 2 или х = 0 или х = -3 или х = -2 у cent z, у = 0, у = -1, у cent z.

Ответ: (0;0);(-3;-1).

14. Решить уравнение у - х - ху = 2 в целых числах.

Решение: у - ху - х + 1 = 3, (у + 1)(1 - х) = 3,

3 = 1·3 = 3·1 = (-1)·(-3) = (-3)·(-1).

у + 1 = 1 или у + 1 = 3 или у + 1 = -1 или у + 1 = -3

1 - х =3, 1 - х =1, 1 - х = -3, 1 - х = -1.

у = 0 или у = 2 или у = -2 или у = -4 х =-2, х = 0, х = 4, х = 2

Ответ: (-2;0);(0;2);(2;-4);(4;-2).

15. Решить уравнение у + 4х + 2ху = 0 в целых числах.

Решение: у + 4х + 2ху + 2 - 2 = 0, (2х + 1)(2 + у) = 2,

2 = 1∙2 = 2∙1 = (-2)∙(-1) = (-1)∙(-2).

2х + 1= 1 или 2х + 1= 2 или 2х + 1= -1 или 2х + 1= -2

2 + у = 2, 2 + у = 1, 2 + у = -2, 2 + у = -1; у = 0 или у = -1 или у = -4 или у = -3 х = 0, х cent Z, х = -1, х cent Z.

Ответ: (-1;-4);(0;0).

16. Решить в целых числах уравнение 5х + 10у = 21.

5(х + 2у) = 21, т. к. 21 != 5n, то корней нет.

Ответ. Корней нет.

17. Решить уравнение 3х + 9у = 51в натуральных числах.

3(х + 3у) = 3∙17, х = 17 - 3у, у = 1, х = 14; у = 2, х = 11; у = 3, х = 8; у = 4, х = 5; у = 5, х = 2; у = 6, х = -1, -1cent N.

Ответ:(2;5);(5;4);(8;3);(11;2; (14;1).

18. Решить уравнение 7х+5у=232 в целых числах.

Решу это уравнение относительно того из неизвестных, при котором находится наименьший (по модулю) коэффициент, т. е. в данном случае относительно у: у=232-7х5.

Подставлю в это выражение вместо х числа: 0;1;2;3;4. Получаю: х=0, у=2325=4625, х=1, у=232-75=45, х=2, у=232-145=43,6, х=3, у=232-215=42,2, х=4, у=232-285=40,8

Ответ. (1;45).

19. Решить в целых числах уравнение 3x + 4y + 5xy = 6.

Имею 3∙4 + 5∙6 = 42 = mn

Делители 42: - +- (1, 2, 3, 6, 7, 14, 21, 42).

x = m - 45, y = n - 35 нахожу, что при m = -1, -6, 14, -21 n = -42, -7, 3, -2 решениями будут: x = -1, -2, 2, -5 y = -9, -2, 0, -1.

Итак, данное уравнение имеет 4 решения в целых числах и ни одного в натуральных.

Ответ. -1;-9;-2;-2;2;0;(-5;-1).

20. Решить уравнение 8х+65у=81в натуральных числах.

81⋮НОД(8;65)=>

8х=81-65у х=81-65у8=16+65-65у8=2+65(1-у)8.

Пусть 1-у8=t, t Є Z. х=2+65t>0у=1-8t>0

65t>-2-8t>-1 t>-265 t t=0.

При t=0 х=2у=1

Ответ. (2;1).

21. Найти целые неотрицательные решения уравнения 3х+7у=250.

250⋮НОД(3;7) =>уравнение можно решить в целых числах.

х=250-7у3=243+7-7у3=81+7(1-у)3.

Пусть 1-у3=t, t Є Z.

х=81+7t>=0у=1-3t>=0

7t>=-81-3t>=-1 t>=-817t=-1147t t=-11;-10;. ;0.

х=81+7tу=1-3t t=-11 х=4у=34 t=-10 х=11у=31 t=-9 х=18у=28 t=-8 х=25у=25 t=-7 х=32у=22 t=-6 х=39у=19 t=-5 х=46у=16 t=-4 х=53у=13 t=-3 х=60у=10 t=-2 х=67у=7 t=-1 х=74у=4 t=0 х=81у=1

Ответ. 11;31;18;28;25;25;32;22;39;19;46;16;53;13;60;10;67;7;74;4;81;1.

22. Решить уравнение ху+х+у3=1988 в целых числах.

Умножим обе части уравнения на 3. Получим:

3х+3ху+у=5964

3х+3ху+у+1=5965

(3х+1)+(3ух+у)=5965

(3х+1) + у(3х+1)=5965

(3х+1)(у+1)=5965

5965=1∙5965 или 5965=5965∙1 или 5965=-1∙(-5965) или 5965=-5965∙(-1) или 5965=5∙1193 или 5965=1193∙1 или 5965=-5∙(-1193) или 5965=-1193∙(-5)

1)3х+1=1у+1=5965 2) 3х+1=5965у+1=1 х=0у=5964 х=1988у=0

3) 3х+1=5у+1=1193 4) 3х+1=1193у+1=5 решений в целых числах нет решений в целых числах нет

5) 3х+1=-1у+1=-5965 6) 3х+1=-5965у+1=-1 решений в целых числах нет решений в целых числах нет

7) 3х+1=-5у+1=-1193 8) 3х+1=-1193у+1=-5 х=-2у=1194 х=-398у=-6

Ответ. 0;5964;1988;0;-2;-1194;(-398;-6).

3. 2 РЕШЕНИЕ ЗАДАЧ

Существует несколько типов задач, чаще всего это задачи олимпиадного характера, которые сводятся к решению диофантовых уравнений. Например: а) Задачи по размену суммы денег определённого достоинства.

б) Задачи на переливание, на деление предметов.

1. Купили 390 цветных карандашей в коробках по 7 и по 12 карандашей. Сколько тех и других коробок купили?

Обозначу: x коробок по 7 карандашей, y коробок по 12 карандашей.

Составлю уравнение:7x + 12y = 390

Найду НОД(7; 12)=1

Определю частное решение: x = (390 - 12y):7

Используя метод перебора, нахожу значение y є y = 1, x = 54

(54;1) - частное решение.

Все остальные решения нахожу по формулам: x = -12k + 54, k є Z y = 7k + 1, k є Z

Я нашла множество решений уравнения. Учитывая условия задачи, определю возможное количество тех и других коробок.

Ответ. Можно купить: 54 коробки по7 карандашей и 1 коробку по 12 карандашей или 42 коробки по 7карандашей и 8 коробок по 12 карандашей, или 30 коробок по 7 карандашей и 15 коробок по 12 карандашей, или 28 коробок по 7 карандашей и 22 коробки по 12 карандашей, или 6 коробок по 7 карандашей и 29 коробок по 12 карандашей.

2. Один катет прямоугольного треугольника на 7 см больше другого, а периметр треугольника равен 30 см. Найдите все стороны треугольника.

Обозначу: x см - один катет, (x+7) см - другой катет, y см - гипотенуза

Составлю и решу диофантово уравнение: x+(x+7)+y=30

Найду НОД(2; 1)=1

Определю частное решение: x = (23 - y):2

Используя метод перебора, нахожу значение y =1 y = 1, x = 11

(11;1) - частное решение.

Все остальные решения уравнения нахожу по формулам: x = -k + 11, k є Z y = 2k + 1, k є Z k

Учитывая, что любая сторона треугольника меньше суммы двух других сторон, приходим к выводу, что существует три треугольника со сторонами 7, 9 и 14; 6, 11 и 13; 5, 13 и 12. По условию задачи дан прямоугольный треугольник. Это треугольник со сторонами 5, 13 и 12 (выполняется теорема Пифагора).

Ответ: Один катет равен 5см, другой - 12 см, гипотенуза - 13 см.

3. Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки?

Пусть мальчиков x, а девочек y, при этом x и y - натуральные числа. Составлю уравнение:

Решаю методом подбора: x

6 Только при x = 4 второе неизвестное получает целое положительное значение (y = 6). При любом другом значении x число y будет либо дробным, либо отрицательным. Следовательно, задача имеет одно единственное решение.

Ответ. 4 мальчика и 6 девочек.

4. Можно ли сформировать набор из карандашей стоимостью 3 рубля и ручек стоимостью 6 рублей на сумму 20 рублей?

Пусть количество карандашей в наборе x, а ручек - y.

Составлю уравнение:

При любых целых числах x и y левая часть уравнения должна делиться на 3; правая часть при этом не делится на 3. Это означает, что не существует таких целых x и y, которые удовлетворяли бы нашему уравнению. Это уравнение неразрешимо в целых числах. Сформировать такой набор невозможно.

Ответ. Решений нет.

5. Найти натуральное число, которое при делении на 3 дает остаток 2, а при делении на 5 - остаток 3.

Обозначу искомое число через x. Если частное от деления x на 3 обозначу через y, а частное от деления на 5 - через z, то получу: х=3у+2х=5z+3

По смыслу задачи x, y и z должны быть натуральными числами. Значит, нужно решить в целых числах неопределенную систему уравнений.

При любых целых y и z , будет целым и x. Вычту из второго уравнения первое и получу:

5z - 3y + 1 = 0.

Найдя все целые положительные y и z, сразу получу и все целые положительные значения x.

Из этого уравнения нахожу:

Одно решение очевидно: при z = 1 получим y = 2, и x и y целые. Им соответствует решение x = 8.

Найду остальные решения. Для этого введу вспомогательное неизвестное u, полагая z = 1 + u. Получу:

5(1 + u) - 3y + 1 = 0, т. е. 5u = 3y - 6 или 5u = 3(y - 2).

Правая часть последнего уравнения при любом целом y делится на 3. Значит, и левая часть должна делиться на 3. Но число 5 - взаимно-простое с числом 3; поэтому u должно разделиться на 3, т. е. иметь вид 3n, где n - целое число. В этом случае y будет равняться

15n/3 + 2 = 5n + 2, т. е. тоже целому числу. Итак, z = 1 + u = 1 + 3n, откуда x = 5z + 3 = 8 + 15n.

Получилось не одно, а бесконечное множество значений для x: x = 8 + 15n, где n - целое число (положительное или ноль):

Ответ. х=8+15n; n є 0;1;2;.

6. Подданные привезли в дар шаху 300 драгоценных камней: в маленьких шкатулках по 15 штук в каждой и в больших - по 40 штук. Сколько было тех и других шкатулок, если известно, что маленьких было меньше, чем больших?

Обозначу за х количество маленьких шкатулок, а за у - количество больших.

15х+40у=300. Сокращу на 5.

3х+8у=60 х=60-8у3 х=60-6у-2у3

Х=20-2у-2у3

Чтобы значение дроби было целым числом, надо чтобы 2у было кратным 3, т. е. 2у=3с.

Выражу переменную у и выделю целую часть:

Z должно быть кратно 2, т. е. z=2u.

Выражу переменные х и у через u:

Х=20-2у-2у3

Х=20-2∙3u-2∙3u3

Составлю и решу систему неравенств:

Выпишу целые решения: 1; 2. Теперь найду значения х и у при u=1; 2.

1) х1=20-8∙1=20-8=12 у1=3∙1=3

2) х2=20-8∙2=20-16=4 у2=3∙2=6

Ответ. 4 маленькие шкатулки; 6 больших шкатулок.

7. Даны два автомобиля Урал 5557, автомобили отправили в рейс Краснотурьинск - Пермь - Краснотурьинск. Всего понадобилось 4 т дизельного топлива и 2 водителя, чтобы выполнить этот рейс. Нужно определить транспортные затраты, а именно стоимость 1 т дизельного топлива и оплату труда водителей, выполняющих этот рейс, если известно, что всего затрачено 76000 р.

Пусть х рублей - стоимость 1 т дизельного топлива, а у рублей - оплата труда водителей. Тогда (4х + 2у) рублей - затрачено на выполнение рейса. А по условию задачи затрачено 76000 р.

Получу уравнение:

Для решения этого уравнения метод перебора окажется трудоемким процессом. Так что воспользуюсь методом >.

Выражу переменную у через х: , выделю целую часть, получу: (1).

Чтобы значение дроби было целым числом, нужно чтобы, 2х было кратно 4. Т. е. 2х = 4z, где z - целое число. Отсюда:

Значение х подставлю в выражение (1):

Т. к. х, у 0, то 19000 z 0, следовательно, придавая z целые значения от 0 до 19000, получу следующие значения x и y: z

Из настоящих данных о транспортных затратах известно, что 1 т дизельного топлива (х) стоит 18000 р. , а оплата труда водителей, выполняющих рейс (у) составляет 10000 р. (данные взяты приближенно). По таблице найдем, что значению х, равному 18000 и значению у, равному 10000 соответствует значение z, равное 9000, действительно: ;.

8. Сколькими способами можно набрать сумму 27р. , имея достаточно много двухрублёвых и пятирублёвых монет?

Обозначу: x двухрублёвых монет и y пятирублёвых монет

Составлю уравнение, учитывая условие задачи 2x +5y = 27.

Найду НОД(2;5)=1

Определю частное решение: x = (27-5y):2

Используя метод перебора, нахожу значение y є y = 1, x = 11

(11;1) - частное решение.

Все остальные решения находятся по формулам: x = -5k + 11, k є Z y = 2k + 1, k є Z

Данное уравнение имеет множество решений. Найдём все способы, с помощью которых можно набрать сумму 27 рублей предложенными монетами. k

Ответ. Существует три способа, которыми можно набрать данную сумму, имея достаточно много двухрублёвых и пятирублёвых монет.

9. Допустим, в аквариуме живут осьминоги и морские звёзды. У осьминогов по 8 ног, а у морских звёзд - по 5. Всего конечностей насчитывается 39. Сколько в аквариуме животных?

Пусть х - количество морских звёзд, у - количество осьминогов. Тогда у всех осьминогов по 8у ног, а у всех звёзд 5х ног.

Составлю уравнение: 5х + 8у = 39.

Замечу, что количество животных не может выражаться нецелым или отрицательным числами. Следовательно, если х - целое неотрицательное число, то и у=(39 - 5х)/8 должно быть целым и неотрицательным, а, значит, нужно, чтобы выражение 39 - 5х без остатка делилось на 8. Простой перебор вариантов показывает, что это возможно только при х = 3, тогда у = 3.

Ответ: (3; 3).

10. На мебельной фабрике изготовляют табуреты с тремя и с четырьмя ножками. Мастер сделал 18 ножек. Какое количество табуретов можно изготовить так, чтобы использовать все ножки?

Пусть x - количество трехногих табуретов, а у - количество четырехногих. Тогда, 3x + 4y = 18.

Имею, 4y =18 - 3x; y = 3(6 - x):4.

Получаю: x = 2; y = 3 или x = 6; y = 0.

Других решений нет, так как x 6.

Ответ. 2;3;(6;0).

11. Можно ли разместить 718 человек в 4-х и 8 - ми местных каютах, так что бы в каютах не было свободных мест?

Пусть 4-х местных кают - х, а 8-ми местных - у, тогда:

2(х + 2у) = 309

Ответ. Нельзя.

12. Доказать, что на прямой 124х + 216у = 515 нет ни одной точки с целочисленными координатами.

НОД(124;216) = 4, 515 != 4n, значит, целочисленных решений нет.

Ответ. Решений нет.

13. Стоимость товара 23 рубля, покупатель имеет только 2-х рублевые, а кассир 5-ти рублевые монеты. Можно ли осуществить покупку без предварительного размена денег?

Пусть х - количество 2-х рублевых монет, у - количество 5-ти рублевых монет, тогда 2х - 5у = 23, где х,у є N.

Получаю: 2х = 23 + 5у, откуда х =23 + 5у2 =11 + 2у + (1 + у)2 х будет целым, если 1 + у2 есть число целое.

1 + у2 = t, где t Euro Z, тогда у = 2t - 1.

x = 11 + 2y + 1 + у2 = 11 + 4t - 2 + 1 + 2t-12 = 5t + 9.

T. o. x = 5t + 9, a y = 2t - 1, где t є z.

Задача имеет множество целочисленных решений. Простейшее из них при t = 1, x =14, y = 1, т. е. покупатель даст четырнадцать 2-х рублёвых монет и получит сдачу одну 5-ти рублёвую монету.

Ответ. Можно.

14. При ревизии торговых книг магазина одна из записей оказалась залитой чернилами и имела такой вид:

> Невозможно было разобрать число проданных метров, но было несомненно, что число это не дробное; в вырученной сумме можно было различить только три последние цифры, да установить еще, что перед ними были три какие-то другие цифры. Можно ли по этим данным восстановить запись?

Пусть число метров было х, тогда стоимость товара в копейках - 4936х. Три залитые цифры в сумме обозначим за у, это число тысяч копеек, а вся сумма в копейках выразится так (1000у + 728).

Получаю уравнение 4936х = 1000у + 728, поделю его на 8.

617х - 125у = 91, где х,у є z, x,y

125у =617х - 91 у = 5х - 1 +34 - 8х125 = 5х - 1 + 2 17 - 4х125 =

5х - 1 + 2t, где t = 17 - 4х125, t Euro Z.

Из уравнения t = (17 - 4х)/125 получаю х = 4 - 31t + 1 - t4 =

4 - 31t + t1, где t1 = 1 - t4, отсюда t = 1 - 4t1, a x = 125t1 - 27, y = 617t1 - 134.

По условию знаю, что 100

100 = 234/617 и t1

Значит, было отпущено 98 метров на сумму 4837,28 рублей. Запись восстановлена.

Ответ. Отпущено 98 метров.

15. Требуется на один рубль купить 40 штук почтовых марок - копеечных, 4- копеечных и 12 - копеечных. Сколько марок каждого достоинства можно купить?

Можно составить два уравнения: x + 4у + 12z = 100 и x + y + z = 40, где х - число копеечных марок, у - 4-копеечных, z - 12-копеечных. Вычитаю из первого уравнения второе получаю:

3у + 11z = 60, y = 60 - 11z3 = 20 - 11· z3.

Пусть z3 = t, z = 3t, где t Euro Z. Тогда получаю, если х + у + z = 40 и z = 3t, а у = 20 - 11t, х = 20 + 8t.

Т. к. х >= 0, у >= 0, z >= 0, то 0

Тогда соответственно получаю: t = 0, х = 20, у = 20, z= 0; t = 1, х = 28, у = 9, z = 3.

Итак, покупка марок может быть произведена только двумя способами, а если поставить условие, чтобы была куплена хотя бы одна марка каждого достоинства, - только одним способом.

Ответ. 28 марок по 1 копейке, 9 марок по 4 копейки и 3 марки по 12 копеек.

16. Ученику дали задание из 20 задач. За каждую верно решенную он получает 8 баллов, за каждую, не решенную, с него снимают 5 баллов. За задачу, за которую он не брался - 0 баллов. Ученик в сумме набрал 13 баллов. Сколько задач он брался решать?

Пусть верно решенных задач - х, а неверно решенных - у, не рассмотренных - z.

Тогда х + у + z = 20, а 8х - 5у = 13.

у = 8х - 135= х - 2 +3(х - 1)5 = х - 2 + 3t, где t = х - 15, а х = 5t + 1.

По условию х + у

Ответ: ученик брался решать 13 задач, 6 решил, с 7 не справился.

17. Иванушка Дурачок бьется со Змеем Горынычем, у которого 2001 голова. Махнув мечем налево, Иван срубает 10 голов, а взамен вырастают 16. Махнув, мечем направо - срубает15, вырастают - 6. Если все головы срублены - новых не вырастает. Махать можно в произвольном порядке, но если голов меньше 15, то только налево, а если меньше 10, то вообще нельзя. Может ли Иванушка Дурачок победить Змея Горыныча?

Переформулирую задачу: можно ли срубить 1986 голов? Тогда, оставшиеся 15, Иван срубит одним ударом направо и новых не вырастет.

Пусть х - число ударов направо, а у - число ударов налево, тогда 1986 - 9х + 6у = 0.

Поделю всё уравнение на 6, получу

3х - 2у = 662.

у = 3х - 6622= х - 331 + х2.

Пусть х2 = t, тогда x = 2t, a y = 3t - 331.

Т. к. х >= 0, у >= 0, то t >= 111, отсюда t = 111, х = 222, у = 2.

Получаю: ударив 220 раз направо, Иван срубает 1980 голов и у Змея остаётся 21 голова; затем 2 удара налево и у Змея вырастают 12 голов, всего их становится 33; следующие 2 удара направо лишают Змея 18 голов и оставшиеся 15 Иван срубает последним ударом направо и новых голов уже не вырастает.

Ответ: 220 ударов направо, 2 удара налево и ещё 3 удара направо.

18. У игрального кубика грани пронумерованы - 1, 2, 3, 4, 5, 6. Из 5 таких кубиков сложили башню и сосчитали сумму очков на всех видимых гранях, после того как сняли верхний куб сумма уменьшилась на 19, какое число оказалось на верхней грани верхнего куба?

Сумма очков одного куба - 21.

Пусть х - количество очков на нижней грани верхнего куба, а у - количество очков на верхней грани следующего куба. При снятии верхнего куба, пропадают очки 5 граней верхнего куба, сумма очков которых (21 - х), а появляется грань на которой у очков, значит, сумма очков уменьшилась на (21 - х) - у, а по условию это 19, отсюда:

(21 - х) - у = 19, х + у = 2.

Отсюда у = 2 - х, а по условию 1

19. Некто купил 30 птиц за 30 монет одного достоинства. За каждых 3 воробьёв уплачена одна монета, за 2 снегиря - 1 монета, за 1 голубя - 2 монеты. Сколько птиц каждого вида было?

Пусть воробьёв было - х, снегирей - у, а голубей - z. Тогда, согласно условию х + у + z = 30 и 13x + 12y + 2z = 30.

Получаю х + у + z = 30 и 2x + 3y + 12z = 180, или y + 10z = 120, y = 120 - 10z, где по условию х

Отсюда следующие варианты (0;20;10); (9;10;11); (18;0;12).

Ответ: воробьев - 0, снегирей - 20, голубей - 10; воробьев - 9, снегирей - 10, голубей - 11; воробьев - 18, снегирей - 0, голубей - 12.

20. Найти все двухзначные числа, каждое из которых, будучи уменьшено на 2, равно упятеренному произведению своих цифр.

Пусть ху искомые двузначные числа.

Для уравнения ху - 2 = 5ху, или (10х + у) - 5ху = 2 S = 0 и все натуральные решения найду из множества (х; 2).

Т. к. х - первая цифра двухзначных чисел, то она может принимать только 9 значений.

Т. о. , искомыми числами будут: 12, 22, 32,. , 92.

Ответ. 12; 22, 32; 42; 52; 62; 72; 82; 92.

21. Кусок проволоки длиной 102 см нужно разрезать на части длиной 15 см и 12 см так, чтобы была использована вся проволока. Как это сделать?

Пусть х- число частей проволоки длиной 15 см, у- число частей проволоки длиной 12 см. Составлю уравнение:

15х+12у=102 /:3

4х+3у=34 х=34-4у5=6+4-4у5=6+4(1-у)5.

Пусть 1-у5=t х=6+4t>0у=1-5t>0=> 4t>-6-5t>-1 => t>-1,5t t=0;-1.

Если t=0, то х=6у=1

Если t=-1, то х=2у=6

Ответ. Задача имеет два решения:

1) 102=15∙6+12∙1; 2) 102=15∙2+12∙6.

22. Пете в 1987 году было столько лет, какова сумма цифр года его рождения. В каком году он родился?

Пусть Петя родился в 19ху году. Тогда в 1987 году ему было 1987-19ху, или (1+9+х+у) лет. Имеем уравнение:

87-(10х+у)=10+х+у

77-11х=2у у=77-11х2=38-11х-12.

Учитывая, что х и у - цифры десятичной системы счисления, то подбором находим: х=3, у=1.

Ответ. Петя родился в 1970 году.

23. Некто покупает в магазине вещь стоимостью 19 р. У него имеются лишь 15-трехрублевок, у кассира же лишь 20-пятирублевок. Можно ли расплатиться и как?

Задача сводится к решению в целых положительных числах диофантова уравнения: 3x - 5y = 19, где x

Ввиду того, что x>0 и y > 0 и учитывая условия задачи, легко установить, что 0

Отсюда вытекает 2 возможных значения: x

Ответ. 1) 19=3∙8-1∙5 2) 19=3∙13-4∙5.

24. Можно ли отвесить 28 г некоторого вещества на чашечных весах, имея только 4 гири весом в 3 г и 7 гирь весом в 5г?

Для этого нужно решить уравнение:

x = 9 - 2(3y1 - 1) + y1 = 11-5y1.

Итак, x = 11 - 5 y1 y = 3 y1 - 1.

Из условий задачи вытекает, что y1 нельзя давать отрицательные значения. Далее должно быть y1

Ответ. 1 гиря в 3 г и 5 гирь в 5 г.

25. Покупатель приобрел в магазине на 21 р. товара. Но у него в наличии денежные знаки только 5 - рублевого достоинства, а у кассира - 3 - рублевого. Требуется знать, можно ли при наличии денег расплатиться с кассиром и как именно?

Пусть x - число 5 - рублевок, y - 3 - рублевок.

По условию x > 0, y > 0, значит.

Кроме того, t - четное, иначе ни x, ни y не будет целыми.

При t = 4, 6, 8,. имеем: t

Ответ. 6;3;8;8;12;13;15;18;18;23;21;28;24;33;27;38;(30;43).

26. Имеется 110 листов бумаги. Требуется из них сшить тетради по 8 листов и по 10 листов в каждой. Сколько надо сшить тех и других?

Пусть x - число 8 - листовых тетрадей, y - число 10 - листовых тетрадей.

Значит t = 0 или t = - 1

Ответ. 5;7;(10;3).

27. Многие старинные способы отгадывания чисел и дат рождения основываются на решении диофантовых уравнений. Тех, например, чтобы отгадать дату рождения (месяц и число) собеседника, достаточно узнать у него сумму, получаемую от сложения двух произведений: числа даты (x) на 12 и номера месяца (y) на 31.

Пусть сумма произведений, о которых идет речь, равна 330. Найти дату рождения.

Решим неопределенное уравнение: y = 2y1 + y2 = 2(2y2 + y3) + y2 = 5y2 + 2y3 = 5(2y3 - 6) + 2y3 = 12y3 - 30 x = 27 - 3(12y3 - 30) + 2y2 + y3 = 27 - 36y3 + 90 + 2(2y3 - 6) + y3 =

27 - 36y3 + 90 + 5y3 - 12 = 105 - 31y3 x = 12y3 - 30, y = 105 - 31y3

Итак, дата рождения: 12 число 6 - го месяца.

28. Можно ли двухрублевыми и пятирублевыми монетами набрать сумму в 51 рубль? Если можно, то сколько существует способов?

Пусть было х - двухрублевых монет, а пятирублевых - у монет.

Пусть 1+у2=z, тогда

=> z = 1, 2, 3, 4, 5

Ответ: 5 способов.

29. Можно ли разложить две сотни яиц в коробки по 10 и по 12 штук? Если можно, то найдите все такие способы.

Пусть было х коробок по 10 штук и у коробок по 12 штук. Составлю уравнение: z = 1, 2, 3

Ответ: 14;5;8;10;(2;15)

30. Представьте число 257 в виде суммы двух натуральных слагаемых: а) одно из которых кратное 3, а другое - 4; б) одно из которых кратное 5, а другое - 8.

Ответ: 1) 249 и 8; 2) 225 и 32.

В задачах на неопределенные уравнения я столкнулась с самыми разнообразными случаями: задача может быть совсем неразрешимой (Задача 4), может иметь бесконечное множество решений (Задача 2), может иметь несколько определенных решений; в частности, она может иметь одно единственное решение (Задача 1).

ЗАКЛЮЧЕНИЕ

Цель, которую я поставила перед собой, мной реализована. Работа над проектом вызвала интерес и увлекла меня. Эта работа потребовала от меня не только определенных математических знаний и настойчивости, но и дала мне возможность почувствовать огромную радость самостоятельного открытия.

Диофантовы уравнения встречаются в олимпиадных заданиях, поэтому они развивают логическое мышление, повышают уровень математической культуры, прививают навыки самостоятельной исследовательской работы в математике.

При решении уравнений и задач, сводящихся к диофантовым уравнениям, применяются свойства простых чисел, метод разложения многочлена на множители, метод перебора, метод спуска и алгоритм Евклида. На мой взгляд, метод спуска самый сложный. А симпатичнее для меня оказался метод перебора.

В работе мною решено 54 задачи.

Эта работа способствовала более глубокому пониманию школьной программы и расширению кругозора.

Данный материал будет полезен учащимся, интересующихся математикой. Его можно использовать на некоторых уроках и на факультативных занятиях.

1.3 Способы решения уравнений

При решении уравнений в целых и натуральных числах можно условно выделить следующие методы:

1. Способ перебора вариантов.

2. Алгоритм Евклида.

3. Цепные дроби.

4. Метод разложения на множители.

5. Решение уравнений в целых числах как квадратных относительно какой-либо переменной.

6. Метод остатков.

7. Метод бесконечного спуска.

Глава 2. Применение способов решения уравнений

1. Примеры решения уравнений.

2.1 Алгоритм Евклида.

Задача 1 . Решить уравнение в целых числах 407х – 2816y = 33.

Воспользуемся составленным алгоритмом.

1. Используя алгоритм Евклида, найдем наибольший общий делитель чисел 407 и 2816:

2816 = 407·6 + 374;

407 = 374·1 + 33;

374 = 33·11 + 11;

Следовательно (407,2816) = 11, причем 33 делится на 11

2. Разделим обе части первоначального уравнения на 11, получим уравнение 37х – 256y = 3, причем (37, 256) = 1

3. С помощью алгоритма Евклида найдем линейное представление числа 1 через числа 37 и 256.

256 = 37·6 + 34;

Выразим 1 из последнего равенства, затем последовательно поднимаясь по равенствам будем выражать 3; 34 и полученные выражения подставим в выражение для 1.

1 = 34 – 3·11 = 34 – (37 – 34·1) ·11 = 34·12 – 37·11 = (256 – 37·6) ·12 – 37·11 =

– 83·37 – 256·(–12)

Таким образом, 37·(– 83) – 256·(–12) = 1, следовательно пара чисел х 0 = – 83 и у 0 = – 12 есть решение уравнения 37х – 256y = 3.

4. Запишем общую формулу решений первоначального уравнения

где t - любое целое число.

2.2 Способ перебора вариантов.

Задача 2. В клетке сидят кролики и фазаны, всего у них 18 ног. Узнать, сколько в клетке тех и других?

Решение: Составляется уравнение с двумя неизвестными переменными, в котором х – число кроликов, у – число фазанов:

4х + 2у = 18, или 2х + у = 9.

Выразим у через х : у = 9 – 2х.

х 1 2 3 4
у 7 5 3 1

Таким образом, задача имеет четыре решения.

Ответ: (1; 7), (2; 5), (3; 3), (4; 1).

2.3 Метод разложения на множители.

Перебор вариантов при нахождении натуральных решений уравнения с двумя переменными оказывается весьма трудоемким. Кроме того, если уравнение имеет целые решения, то перебрать их невозможно, так как таких решений бесконечное множество. Поэтому покажем еще один прием - метод разложения на множители.

Задача 3. Решить уравнение в целых числах y 3 - x 3 = 91.

Решение. 1) Используя формулы сокращенного умножения, разложим правую часть уравнения на множители:

(y - x )(y 2 + xy + x 2) = 91……………………….(1)

2) Выпишем все делители числа 91: ± 1; ± 7; ± 13; ± 91

3) Проводим исследование. Заметим, что для любых целых x и y число

y 2 + yx + x 2 ≥ y 2 - 2|y ||x | + x 2 = (|y | - |x |) 2 ≥ 0,

следовательно, оба сомножителя в левой части уравнения должны быть положительными. Тогда уравнение (1) равносильно совокупности систем уравнений:

; ; ;

4) Решив системы, получим: первая система имеет решения (5; 6), (-6; -5); третья (-3; 4),(-4;3); вторая и четвертая решений в целых числах не имеют.

Ответ: уравнение (1) имеет четыре решения (5; 6); (-6; -5); (-3; 4); (-4;3).

Задача 4. Найти все пары натуральных чисел, удовлетворяющих уравнению

Решение. Разложим левую часть уравнения на множители и запишем уравнение в виде

.

Т.к. делителями числа 69 являются числа 1, 3, 23 и 69, то 69 можно получить двумя способами: 69=1·69 и 69=3·23. Учитывая, что

, получим две системы уравнений, решив которые мы сможем найти искомые числа: или .

Первая система имеет решение

, а вторая система имеет решение .

Ответ:

.

Задача 5. Решить уравнение в целых числах:

.

Решение. Запишем уравнение в виде

.

Разложим левую часть уравнения на множители. Получим

.

Произведение двух целых чисел может равняться 1 только в двух случаях: если оба они равны 1 или -1. Получим две системы:

или .

Первая система имеет решение х=2, у=2, а вторая система имеет решение х=0, у=0.

Ответ:

.

Задача 6. Решить в целых числах уравнение

Решение . Запишем данное уравнение в виде

.

Разложим левую часть уравнения на множители способом группировки, получим

.

Произведение двух целых чисел может равняться 7 в следующих случаях:

7=1· 7=7·1=-1·(-7)=-7·(-1).Таким образом, получим четыре системы:

или , или , или .

Решением первой системы является пара чисел х = - 5, у = - 6. Решая вторую систему, получим х = 13, у = 6.Для третьей системы решением являются числа х = 5, у = 6. Четвёртая система имеет решение х = - 13, у = - 6.

.

Задача 7. Доказать, что уравнение (x - y ) 3 + (y - z ) 3 + (z - x ) 3 = 30 не

Нелинейные уравнения с двумя неизвестными

Определение 1 . Пусть A - некоторое множество пар чисел (x ; y ) . Говорят, что на множестве A задана числовая функция z от двух переменных x и y , если указано правило, с помощью которого каждой паре чисел из множества A ставится в соответствие некоторое число.

Задание числовой функции z от двух переменных x и y часто обозначают так:

где f (x , y ) – любая функция, отличная от функции

f (x , y ) = ax +by + c ,

где a , b , c – заданные числа.

Определение 3 . Решением уравнения (2) называют пару чисел (x ; y ) , для которых формула (2) является верным равенством.

Пример 1 . Решить уравнение

Поскольку квадрат любого числа неотрицателен, то из формулы (4) вытекает, что неизвестные x и y удовлетворяют системе уравнений

решением которой служит пара чисел (6 ; 3) .

Ответ : (6 ; 3)

Пример 2 . Решить уравнение

Следовательно, решением уравнения (6) является бесконечное множество пар чисел вида

(1 + y ; y ) ,

где y – любое число.

линейное

Определение 4 . Решением системы уравнений

называют пару чисел (x ; y ) , при подстановке которых в каждое из уравнений этой системы получается верное равенство.

Системы из двух уравнений, одно из которых линейное , имеют вид

g (x , y )

Пример 4 . Решить систему уравнений

Решение . Выразим из первого уравнения системы (7) неизвестное y через неизвестное x и подставим полученное выражение во второе уравнение системы:

Решая уравнение

x 1 = - 1 , x 2 = 9 .

Следовательно,

y 1 = 8 - x 1 = 9 ,
y 2 = 8 - x 2 = - 1 .

Системы из двух уравнений, одно из которых однородное

Системы из двух уравнений, одно из которых однородное , имеют вид

где a , b , c – заданные числа, а g (x , y ) – функция двух переменных x и y .

Пример 6 . Решить систему уравнений

Решение . Решим однородное уравнение

3x 2 + 2xy - y 2 = 0 ,

3x 2 + 17xy + 10y 2 = 0 ,

рассматривая его как квадратное уравнение относительно неизвестного x :

.

В случае, когда x = - 5y , из второго уравнения системы (11) получаем уравнение

5y 2 = - 20 ,

которое корней не имеет.

В случае, когда

из второго уравнения системы (11) получаем уравнение

,

корнями которого служат числа y 1 = 3 , y 2 = - 3 . Находя для каждого из этих значений y соответствующее ему значение x , получаем два решения системы: (- 2 ; 3) , (2 ; - 3) .

Ответ : (- 2 ; 3) , (2 ; - 3)

Примеры решения систем уравнений других видов

Пример 8 . Решить систему уравнений (МФТИ)

Решение . Введем новые неизвестные u и v , которые выражаются через x и y по формулам:

Для того, чтобы переписать систему (12) через новые неизвестные, выразим сначала неизвестные x и y через u и v . Из системы (13) следует, что

Решим линейную систему (14), исключив из второго уравнения этой системы переменную x . С этой целью совершим над системой (14) следующие преобразования.

Обращение автора к данной теме не является случайным. Уравнения с двумя переменными впервые встречаются в курсе 7-го класса. Одно уравнение с двумя переменными имеет бесконечное множество решений. Это наглядно демонстрирует график линейной функции, заданный в виде ax + by=c. В школьном курсе учащиеся изучают системы двух уравнений с двумя переменными. В результате из поля зрения учителя и, поэтому ученика, выпадает целый ряд задач, с ограниченными условиями на коэффициент уравнения, а также методы их решения.

Речь идет о решении уравнения с двумя неизвестными в целых или натуральных числах.

В школе натуральные и целые числа изучаются в 4-6-х классах. К моменту окончания школы не все ученики помнят различия между множествами этих чисел.

Однако задача типа “решить уравнение вида ax + by=c в целых числах” все чаще встречается на вступительных экзаменах в ВУЗы и в материалах ЕГЭ.

Решение неопределенных уравнений развивает логическое мышление, сообразительность, внимание анализировать.

Я предлагаю разработку нескольких уроков по данной теме. У меня нет однозначных рекомендаций по срокам проведения этих уроков. Отдельные элементы можно использовать и в 7-м классе (для сильного класса). Данные уроки можно взять за основу и разработать небольшой элективный курс по предпрофильной подготовке в 9-м классе. И, конечно, этот материал можно использовать в 10-11 классах для подготовки к экзаменам.

Цель урока:

  • повторение и обобщение знаний по теме “Уравнения первого и второго порядка”
  • воспитание познавательного интереса к учебному предмету
  • формирование умений анализировать, проводить обобщения, переносить знания в новую ситуацию

Урок 1.

Ход урока.

1) Орг. момент.

2) Актуализация опорных знаний.

Определение. Линейным уравнением с двумя переменными называется уравнение вида

mx + ny = k, где m, n, k – числа, x, y – переменные.

Пример: 5x+2y=10

Определение. Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство.

Уравнения с двумя переменными, имеющими одни и те же решения, называются равносильными.

1. 5x+2y=12 (2)y = -2.5x+6

Данное уравнение может иметь сколько угодно решений. Для этого достаточно взять любое значение x и найти соответствующее ему значение y.

Пусть x = 2, y = -2.5 2+6 = 1

x = 4, y = -2.5 4+6 =- 4

Пары чисел (2;1); (4;-4) – решения уравнения (1).

Данное уравнение имеет бесконечно много решений.

3) Историческая справка

Неопределенные (диофантовы) уравнения – это уравнения, содержащие более одной переменной.

В III в. н.э. – Диофант Александрийский написал “Арифметику”, в которой расширил множество чисел до рациональных, ввел алгебраическую символику.

Так же Диофант рассмотрел проблемы решения неопределенных уравнений и им даны методы решения неопределенных уравнений второй и третьей степени.

4) Изучение нового материала.

Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y Z k0

Утверждение 1.

Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений.

Пример: 34x – 17y = 3.

НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет.

Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно простыми.

Утверждение 2.

Если m и n уравнения (1) взаимно простые числа, то это уравнение имеет по крайней мере одно решение.

Утверждение 3.

Если коэффициенты m и n уравнения (1) являются взаимно простыми числами, то это уравнение имеет бесконечно много решений:

Где (; ) – какое-либо решение уравнения (1), t Z

Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2)

Утверждение 4.

Если m и n – взаимно простые числа, то всякое решение уравнения (2) имеет вид

5) Домашнее задание. Решить уравнение в целых числах:

  1. 9x – 18y = 5
  2. x + y= xy
  3. Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки?

Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором.

Урок 2.

1) Организационный момент

2) Проверка домашнего задания

1) 9x – 18y = 5

5 не делится нацело на 9, в целых числах решений нет.

Методом подбора можно найти решение

Ответ: (0;0), (2;2)

3) Составим уравнение:

Пусть мальчиков x, x Z, а девочек у, y Z, то можно составить уравнение 21x + 15y = 174

Многие учащиеся, составив уравнение, не смогут его решить.

Ответ: мальчиков 4, девочек 6.

3) Изучение нового материала

Столкнувшись с трудностями при выполнении домашнего задания, учащиеся убедились в необходимости изучения их методов решений неопределенных уравнений. Рассмотрим некоторые из них.

I. Метод рассмотрения остатков от деления.

Пример. Решить уравнение в целых числах 3x – 4y = 1.

Левая часть уравнения делится на 3, следовательно, должна делиться и правая часть. Рассмотрим три случая.

Ответ: где m Z.

Описанный метод удобно применять в случае, если числа m и n не малы, но зато разлагаются на простые сомножители.

Пример: Решить уравнения в целых числах.

Пусть y = 4n, тогда 16 - 7y = 16 – 7 4n = 16 – 28n = 4*(4-7n) делится на 4.

y = 4n+1, тогда 16 – 7y = 16 – 7 (4n + 1) = 16 – 28n – 7 = 9 – 28n не делится на 4.

y = 4n+2, тогда 16 – 7y = 16 – 7 (4n + 2) = 16 – 28n – 14 = 2 – 28n не делится на 4.

y = 4n+3, тогда 16 – 7y = 16 – 7 (4n + 3) = 16 – 28n – 21 = -5 – 28n не делится на 4.

Следовательно, y = 4n, тогда

4x = 16 – 7 4n = 16 – 28n, x = 4 – 7n

Ответ: , где n Z.

II. Неопределенные уравнения 2-ой степени

Сегодня на уроке мы лишь коснемся решения диофантовых уравнений второго порядка.

И из всех типов уравнений рассмотрим случай, когда можно применить формулу разности квадратов или другой способ разложения на множители.

Пример: Решить уравнение в целых числах.

13 – простое число, поэтому оно может быть разложено на множители лишь четырьмя способами: 13 = 13 1 = 1 13 = (-1)(-13) = (-13)(-1)

Рассмотрим эти случаи

Ответ: (7;-3), (7;3), (-7;3), (-7;-3).

4) Домашнее задание.

Примеры. Решить уравнение в целых числах:

(x - y)(x + y)=4

2x = 4 2x = 5 2x = 5
x = 2 x = 5/2 x = 5/2
y = 0 не подходит не подходит
2x = -4 не подходит не подходит
x = -2
y = 0

Ответ: (-2;0), (2;0).

Ответы: (-10;9), (-5;3), (-2;-3), (-1;-9), (1;9), (2;3), (5;-3), (10;-9).

в)

Ответ: (2;-3), (-1;-1), (-4;0), (2;2), (-1;3), (-4;5).

Итоги. Чтозначит решить уравнение в целых числах?

Какие методы решения неопределенных уравнений вы знаете?

Приложение:

Упражнения для тренировки.

1) Решите в целых числах.

а) 8x + 12y = 32 x = 1 + 3n, y = 2 - 2n, n Z
б) 7x + 5y = 29 x = 2 + 5n, y = 3 – 7n, n Z
в) 4x + 7y = 75 x = 3 + 7n, y = 9 – 4n, n Z
г) 9x – 2y = 1 x = 1 – 2m, y = 4 + 9m, m Z
д) 9x – 11y = 36 x = 4 + 11n, y = 9n, n Z
е) 7x – 4y = 29 x = 3 + 4n, y = -2 + 7n, n Z
ж) 19x – 5y = 119 x = 1 + 5p, y = -20 + 19p, p Z
з) 28x – 40y = 60 x = 45 + 10t, y = 30 + 7t, t Z

2) Найти целые неотрицательные решения уравнения.

  1. Уравнения первой степени с двумя неизвестными
  1. Примеры уравнений второй степени с тремя неизвестными
  1. Общий случай уравнения второй степени с двумя неизвестными

Р А З Р А Б О Т К А П Р О Г Р А М М

  1. Программа №1 (уравнения с одним неизвестным)

ВВЕДЕНИЕ

Мой курсовой проект посвящен одному из наиболее интересных разделов теории чисел - решению уравнений в целых числах.

Решение в целых числах алгебраических уравнений с целыми коэффициентами более чем с одним неизвестным представляет собой одну из труднейших проблем теории чисел.

Проблема решения уравнений в целых числах решена до конца только для уравнений второй степени с двумя неизвестными. Отметим, что для уравнений любой степени с одним неизвестным она не представляет сколько-нибудь существенного интереса, так как эта задача может быть решена с помощью конечного числа проб. Для уравнений выше второй степени с двумя или более неизвестными весьма трудна не только задача нахождения всех решений в целых числах, но даже и более простая задача установления существования конечного или бесконечного множества таких решений.

В своем проекте я постаралась изложить некоторые основные результаты, полученные в теории; решения уравнений в целых числах. Теоремы, формулируемые в нем, снабжены доказательствами в тех случаях, когда эти доказательства достаточно просты.


1. УРАВНЕНИЯ С ОДНИМ НЕИЗВЕСТНЫМ

Рассмотрим уравнение первой степени с одним неизвестным

Пусть коэффициенты уравнения

и - целые числа. Ясно, что решение этого уравнения

будет целым числом только в том случае, когда

нацело делится на . Таким образом, уравнение (1) не всегда разрешимо в целых числах; так, например, из двух уравнений и первое имеет целое решение , а второе в целых числах неразрешимо.

С тем же обстоятельством мы встречаемся и в случае уравнений, степень которых выше первой: квадратное уравнение

имеет целые решения , ; уравнение в целых числах неразрешимо, так как его корни ,иррациональны.

Вопрос о нахождении целых корней уравнения n-ой степени с целыми коэффициентами

(2)

решается легко. Действительно, пусть

- целый корень этого уравнения. Тогда
, .

Из последнего равенства видно, что

делится без остатка; следовательно, каждый целый корень уравнения (2) является делителем свободного члена уравнения. Для нахождения целых решений уравнения надо выбрать те из делителей , которые при подстановке в уравнение обращают его в тождество. Так, например, из чисел 1, -1, 2 и -2, представляющих собой все делители свободного члена уравнения
,

только -1 является корнем. Следовательно это уравнение, имеет единственный целый корень

. Тем же методом легко показать, что уравнение

в целых числах неразрешимо.

Значительно больший интерес представляет решение в целых числах уравнении с многими неизвестными.

2. УРАВНЕНИЯ ПЕРВОЙ СТЕПЕНИ С ДВУМЯ НЕИЗВЕСТНЫМИ

Рассмотрим уравнение первой степени с двумя неизвестными

, (3)
и - целые числа, отличные от нуля, а - произвольное целое. Будем считать, что коэффициенты и не имеют общих делителей, кроме единицы. Действительно, если общий наибольший делитель этих коэффициентов отличен от единицы, то справедливы равенства , ; уравнение (3) принимает вид

и может иметь целые решения только в том случае, когда

делится на . Таким образом, в случае - все коэффициенты уравнения (3) должны делиться нацело на , и, сокращая (3) на , придем к уравнению
,

коэффициенты которого

и взаимно просты.

Рассмотрим сначала случай, когда

Публикации по теме