Автор закона гомологичных рядов наследственной изменчивости. Гомологических рядов наследственной изменчивости закон

Закон гомологических рядов Вавилова

Важным теоретическим обобщением исследований Н. И. Вавилова является разработанное им учение о гомологических рядах. Согласно сформулированному им закону гомологических рядов наследственной изменчивости, не только близкие в генетическом отношении виды, но и роды растений образуют гомологические ряды форм, т. е. в генетической изменчивости видов и родов существует определенный параллелизм. Близкие виды благодаря большому сходству их генотипов (почти одинаковому набору генов) обладают сходной наследственной изменчивостью. Если все известные вариации признаков у хорошо изученного вида расположить в определенном порядке, то и у других родственных видов можно обнаружить почти все те же вариации изменчивости признаков. Например, приблизительно одинакова изменчивость остистости колоса у мягкой, твердой пшеницы и ячменя.

Трактовка Н.И.Вавилова. Виды и роды генетически близкие характеризуются сходными рядами наследственной изменчивости, с такой правильностью, что, зная ряд форм в пределах одного вида можно предвидеть нахождение параллельных форм у других видов и родов. Чем ближе родство, тем полнее сходство в рядах изменчивости.

Современная трактовка закона

Родственные виды, роды, семейства обладают гомологичными генами и порядками генов в хромосомах, сходство которых тем полнее, чем эволюционно ближе сравниваемые таксоны. Гомология генов у родственных видов проявляется в сходстве рядов их наследственной изменчивости (1987 г.).

Значение закона

1. Закон гомологических рядов наследственной изменчивости позволяет находить нужные признаки и варианты в почти бесконечном многообразии форм различных видов как культурных растений и домашних животных, так и их диких родичей.

2. Он дает возможность успешно осуществлять поиск новых сортов культурных растений и пород домашних животных с теми или иными требуемыми признаками. В этом заключается огромное практическое значение закона для растениеводства, животноводства и селекции.



3. Его роль в географии культурных растений сопоставима с ролью Периодической системы элементов Д. И. Менделеева в химии. Применяя закон гомологических рядов, можно установить центр происхождения растений по родственным видам со сходными признаками и формами, которые развиваются, вероятно, в одной и той же географической и экологической обстановке.

Билет 4

Наследование признаков при расхождении половых хромосом(первичное и вторичное нерасхождение Х-хромосом у дрозофиллы)

Как отмечалось ранее, при скрещивании белоглазой самки дрозофилы с красноглазым самцом вF1 все дочери имеют красные глаза, а у всех сыновей, получающих свою единственную Х -хромосому от матери, глаза белые. Однако иногда в таком скрещивании проявляются единичные красноглазые самцы и белоглазые самки, так называемые исключительные мухи с частотой 0,1-0,001%. Бриджес предположил, что появление таких «исключительных особей» объясняется тем, что у их матери во время мейоза обе Х-хромосомы попали в одно яйцо, т.е. произошло нерасхождение Х -хромосом. Каждое из таких яиц может быть оплодотворено либо спермием с Х -хромосомой, либо Y -хромосомой. В результате может образоваться 4 типа зигот: 1) с тремя Х -хромосомами –ХХХ ; 2) с двумя материнскими Х -хромосомами и Y -хромосомойХХY ; 3) с одной отцовской Х -хромосомой; 4) без Х -хромосомы, но с Y –хромосомой.

ХХY являются нормальными плодовитыми самками. ХО -самцы, но стерильны. Это показывает, что у дрозофилы Y -хромосома не содержит генов, определяющих пол. При скрещивании ХХY самок с нормальными красноглазыми самцами (XY ) Бриджес обнаружил среди потомства 4% белоглазых самок и 4% красноглазых самцов. Остальная часть потомства состояла из красноглазых самок и белоглазых самцов. Появление подобных исключительных особей автор объяснил вторичным нерасхождением Х -хромосом в мейозе, потому что самки, взятые в скрещивании (XXY ), возникли вследствие первичного нерасхождения хромосом. Вторичное нерасхождение хромосом у таких самок в мейозе наблюдается в 100 раз чаще, чем первичное.

У ряда других организмов, в том числе у человека, также известно нерасхождение половых хромосом. Из 4-х типов потомков, получающихся при нерасхождении Х -хромосом у женщин, особи, не имеющие ни одной Х -хромосомы, погибают в течение эмбрионального развития. Зиготы ХХХ развиваются у женщин, у которых чаще обычного встречаются умственные дефекты и бесплодие. Из зигот ХХY развиваются неполноценные мужчины – синдром Клайнфельтера – бесплодие, умственная отсталость, евнухоидное телосложение. Потомки с одной Х -хромосомой чаще погибают в эмбриональном развитии, редкие выжившие – женщины с синдромом Шерешевского-Тернера. Они низкого роста, инфантильны, бесплодны. У человека Y -хромосомы содержат гены, определяющие развитие организма мужского пола. При отсутствии Y -хромосомы развитие идёт по женскому типу. Нерасхождение половых хромосом у человека происходит чаще, чем у дрозофилы; в среднем на каждые 600 родившихся мальчиков приходится один с синдромом Клайнфельтера.

Закон, который был открыт выдающимся отечественным ученым Н. И. Вавиловым, является мощнейшим стимулятором селекции новых видов растений и животных, которые выгодны для человека. Даже в настоящее время данная закономерность играет большую роль в изучении эволюционных процессов, разработке акклиматизационной базы. Результаты исследований Вавилова важны и для истолкования различных биогеографических явлений.

Сущность закона

Вкратце закон гомологических рядов звучит следующим образом: спектры изменчивости у родственных типов растений похожи между собой (нередко это бывает строго фиксированное число тех или иных вариаций). Вавилов изложил свои идеи на III селекционном съезде, который проходил в 1920 году в Саратове. Чтобы продемонстрировать действие закона гомологических рядов, он собрал всю совокупность наследственных признаков культурных растений, расположил их в одной таблице и сравнил известные на тот момент сорта и подвиды.

Изучение растений

Вместе со злаковыми Вавилов рассматривал и бобовые. Во многих случаях обнаружилась параллельность. Несмотря на то что у каждого семейства фенотипические признаки различались, у них были свои особенности, форма выражения. К примеру, цвет семян практически у любого культурного растения варьировался от самого светлого до черного. У хорошо изученных исследователями культурных растений было обнаружено до нескольких сотен признаков. У других же, что являлись на тот момент менее изученными или же дикими родственниками окультуренных растений, признаков наблюдалось гораздо меньше.

Географические центры распространения видов

Основой для открытия закона гомологических рядов послужил материал, который Вавилов собрал во время своей экспедиции по странам Африки, Азии, Европы и Америки. Первые предположения о том, что существуют некие географические центры, откуда берут свое начало биологические виды, было сделано швейцарским ученым А. Декандолем. По его представлениям, когда-то эти виды охватывали большие территории, иногда и целые континенты. Однако именно Вавилов был тем исследователем, который смог изучить многообразие растений на научной основе. Он использовал метод, называемый дифференцированным. Вся та коллекция, которая была собрана исследователем во время экспедиций, подвергалась тщательному анализу с помощью морфологических и генетических методов. Так можно было определить конечную область сосредоточения разнообразия форм и признаков.

Карта растений

Во время этих поездок ученый не запутался в многообразии видов различных растений. Всю информацию он наносил при помощи цветных карандашей на карты, затем переводя материал в схематический вид. Таким образом, ему удалось обнаружить, что на всей планете существует всего несколько центров разнообразия окультуренных растений. Ученый показал непосредственно при помощи карт, как из этих центров виды «расползаются» по другим географическим регионам. Некоторые из них уходят на небольшое расстояние. Другие завоевывают весь мир, как это произошло с пшеницей и горохом.

Следствия

Согласно закону гомологической изменчивости, все генетически близкие между собой сорта растений обладают приблизительно равными рядами наследственной изменчивости. При этом ученый допускал, что даже похожие внешне признаки могут иметь различную наследственную основу. Учитывая тот факт, что каждый из генов имеет способность к мутациям в разных направлениях и что данный процесс может протекать без определенного направления, Вавилов сделал предположение, что и количество генных мутаций у родственных видов будет приблизительно одинаковым. Закон гомологических рядов Н. И. Вавилова отражает общие закономерности процессов генной мутации, а также формообразования различных организмов. Он является главной основой изучения биологических видов.

Вавилов показал также и следствие, которое вытекало из закона гомологических рядов. Оно звучит следующим образом: наследственная изменчивость практически у всех видов растений варьируется параллельно. Чем более близкими между собой являются виды, тем в большей степени проявляется данная гомология признаков. Сейчас этот закон повсеместно применяется в селекции сельскохозяйственных культур, а также животных. Открытие закона гомологических рядов является одним из самых крупных достижений ученого, которое принесло ему мировую славу.

Происхождение растений

Ученый создал теорию о происхождении культурных растений в отдаленных друг от друга в различные доисторические эпохи точках земного шара. Согласно закону гомологических рядов Вавилова, у родственных видов растений и животных обнаруживаются похожие вариации изменчивости признаков. Роль этого закона в растениеводстве и животноводстве можно сопоставить с той ролью, которую играет таблица периодических элементов Д. Менделеева в химии. Используя свое открытие, Вавилов пришел к выводу о том, какие территории являются первоисточниками определенных типов растений.

  • Китайско-японскому региону мир обязан происхождением риса, проса, голозерных форм овса, многих типов яблонь. Также территории данного региона являются родиной ценных сортов слив, восточной хурмы.
  • кокосовой пальмы и сахарного тростника - Индонезийско-Индокитайский центр.
  • С помощью закона гомологических рядов изменчивости Вавилову удалось доказать огромное значение полуострова Индостан в развитии растениеводства. Данные территории являются родиной некоторых типов фасоли, баклажанов, огурцов.
  • На территории среднеазиатского региона традиционно выращивались грецкие орехи, миндаль, фисташки. Вавилов открыл, что именно эта территория является родиной репчатого лука, а также первичных типов моркови. В древности выращивали абрикосы. Одними из самых лучших в мире являются дыни, которые были выведены на территориях Средней Азии.
  • На Средиземноморских территориях впервые появился виноград. Здесь также происходил процесс эволюции пшеницы, льна, различных сортов овса. Также достаточно типичных элементов флоры средиземноморья является оливковое дерево. Здесь же началось и окультуривание люпина, клевера и льна.
  • Флора австралийского континента подарила миру эвкалипты, акации, хлопчатник.
  • Африканский регион - родина всех типов арбузов.
  • На Европейско-Сибирских территориях происходило окультуривание сахарной свеклы, сибирской яблони, лесного винограда.
  • Южная Америка - родина хлопчатника. Территория Анд является и некоторых видов томатов. На территориях Древней Мексики произрастала кукуруза и некоторые виды фасоли. Также здесь возник табак.
  • На территориях Африки древний человек использовал сначала только местные виды растений. Черный континент является родиной кофе. На территории Эфиопии впервые появилась пшеница.

Используя закон гомологических рядов изменчивости, ученый может выявить центр происхождения растений по тем признакам, которые схожи с формами видов из другой географической местности. Помимо необходимого разнообразия флоры, для того чтобы возник крупный очаг разнообразных культурных растений, нужна также и земледельческая цивилизация. Так считал Н. И. Вавилов.

Одомашнивание животных

Благодаря открытию закона гомологических рядов наследственной изменчивости стало возможным открытие тех мест, где когда-то впервые произошло одомашнивание животных. Считается, что оно происходило тремя путями. Это сближение человека и животных; насильственное приручение молодых особей; одомашнивание взрослых особей. Территории, на которых происходило одомашнивание диких животных, предположительно находятся в местах обитания их диких сородичей.

Приручение в разные эпохи

Считается, что собака была одомашнена в эпоху мезолита. Свиней и коз человек начал разводить в эпоху неолита, а немного позднее были приручены и дикие лошади. Однако еще недостаточно ясен вопрос о том, кем были предки современных домашних животных. Считается, что предками крупного рогатого скота были туры, лошадей - тарпаны и лошади Пржевальского, домашнего гуся - дикий серый гусь. Сейчас процесс одомашнивания животных нельзя назвать завершенным. Например, в процессе приручения находятся песцы и дикие лисы.

Значение закона гомологических рядов

При помощи данного закона можно не только установить происхождение определенных видов растений и очаги приручения животных. Он позволяет предсказать появление мутаций, сравнивая закономерности мутирования у других типов. Также с помощью данного закона можно предсказать изменчивость признака, возможность появления новых мутаций по аналогии с теми генетическими отклонениями, что были обнаружены у других видов, родственных данному растению.

Среди флоры земного шара выделяется значительная по числу (более 2500) видов группа растений, возделываемых человеком и получивших название культурных. Культурные растения и образованные ими агрофитоценозы пришли на смену луговым и лесным сообществам. Они – результат земледельческой деятельности человека, которая началась 7–10 тысячелетий назад. В переходящих в культуру диких растениях неизбежно отражается новый этап их жизни. Отрасль биогеографии, изучающая распространение культурных растений, их приспособление к почвенноклиматическим условиям в различных областях земного шара и включающая элементы экономики сельского хозяйства, называется географией культурных растений.

По своему происхождению культурные растения делятся на три группы:

  • наиболее молодая группа,
  • сорнополевые виды,
  • наиболее древняя группа.

Наиболее молодая группа культурных растений происходит от видов, до настоящего времени живущих в диком состоянии. К ним относятся плодово-ягодные культуры (яблоня, груша, слива, вишня), все бахчевые, часть корнеплодов (свекла, брюква, редис, репа).

Сорнополевые виды растений стали объектами культуры там, где основная культура из-за неблагоприятных природных условий давала низкие урожаи. Так, при продвижении земледелия на север озимая рожь вытеснила пшеницу; широко распространенная в Западной Сибири масличная культура рыжик, используемая для получения растительного масла, является сорняком в посевах льна.

Для наиболее древних культурных растений невозможно установить время начала их культивирования, поскольку их дикорастущие предки не сохранились. К ним относятся сорго, просо, горох, бобы, фасоль, чечевица.

Потребность в исходном материале для селекции и улучшения сортов культурных растений обусловила создание учения о центрах их происхождения . В основу учения легла идея Ч. Дарвина о существовании географических центров происхождения биологических видов . Впервые географические области происхождения важнейших культурных растений были описаны в 1880 г. швейцарским ботаником А. Декандолем. Согласно его представлениям, они охватывали довольно обширные территории, в том числе целые континенты. Важнейшие исследования в этом направлении спустя полвека были выполнены замечательным русским генетиком и ботаником-географом Н. И. Вавиловым, который осуществил изучение центров происхождения культурных растений на научной основе.

Н. И. Вавилов предложил новый, названный им дифференцированным, метод установления исходного центра происхождения культурных растений, заключающийся в следующем. Собранная из всех мест возделывания коллекция интересующего растения исследуется с помощью морфологических, физиологических и генетических методов. Таким образом, определяется область сосредоточения максимального разнообразия форм, признаков и разновидностей данного вида.

Учение о гомологических рядах . Важным теоретическим обобщением исследований Н. И. Вавилова является разработанное им учение о гомологических рядах. Согласно сформулированному им закону гомологических рядов наследственной изменчивости, не только близкие в генетическом отношении виды, но и роды растений образуют гомологические ряды форм, т. е. в генетической изменчивости видов и родов существует определенный параллелизм. Близкие виды благодаря большому сходству их генотипов (почти одинаковому набору генов) обладают сходной наследственной изменчивостью. Если все известные вариации признаков у хорошо изученного вида расположить в определенном порядке, то и у других родственных видов можно обнаружить почти все те же вариации изменчивости признаков. Например, приблизительно одинакова изменчивость остистости колоса у мягкой, твердой пшеницы и ячменя.

Трактовка Н. И.Вавилова. Виды и роды генетически близкие характеризуются сходными рядами наследственной изменчивости, с такой правильностью, что, зная ряд форм в пределах одного вида можно предвидеть нахождение параллельных форм у других видов и родов. Чем ближе родство, тем полнее сходство в рядах изменчивости.

Современная трактовка закона. Родственные виды, роды, семейства обладают гомологичными генами и порядками генов в хромосомах, сходство которых тем полнее, чем эволюционно ближе сравниваемые таксоны. Гомология генов у родственных видов проявляется в сходстве рядов их наследственной изменчивости (1987 г.).

Значение закона.

  1. Закон гомологических рядов наследственной изменчивости позволяет находить нужные признаки и варианты в почти бесконечном многообразии форм различных видов как культурных растений и домашних животных, так и их диких родичей.
  2. Он дает возможность успешно осуществлять поиск новых сортов культурных растений и пород домашних животных с теми или иными требуемыми признаками. В этом заключается огромное практическое значение закона для растениеводства, животноводства и селекции.
  3. Его роль в географии культурных растений сопоставима с ролью Периодической системы элементов Д. И. Менделеева в химии. Применяя закон гомологических рядов, можно установить центр происхождения растений по родственным видам со сходными признаками и формами, которые развиваются, вероятно, в одной и той же географической и экологической обстановке.

Географические центры происхождения культурных растений. Для возникновения крупного очага происхождения культурных растений Н. И. Вавилов считал необходимым условием, кроме богатства дикорастущей флоры видами, пригодными для возделывания, наличие древней земледельческой цивилизации. Ученый пришел к выводу, что подавляющее большинство культурных растений связано 7 основными географическими центрами их происхождения:

  1. Южно-Азиатским тропическим,
  2. Восточно-Азиатским,
  3. Юго-Западно-азиатским,
  4. Средиземноморским,
  5. Эфиопским,
  6. Центрально-американским,
  7. Андийским.

За пределами этих центров оказалась значительная территория, которая требовала дальнейшего изучения с целью выявления новых очагов окультуривания наиболее ценных представителей дикой флоры. Последователи Н. И. Вавилова – А. И. Купцов и А. М. Жуковский продолжили исследования по изучению центров культурных растений. В конечном итоге число центров и охватываемая ими территория значительно пополнились, их стало 12

  1. Китайско-Японский.
  2. Индонезийско-Индокитайский.
  3. Австралийский.
  4. Индостанский.
  5. Среднеазиатский.
  6. Переднеазиатский.
  7. Средиземноморский.
  8. Африканский.
  9. Европейско-Сибирский.
  10. Центрально-американский.
  11. Южно-Американский.
  12. Северо-Американский

Гомологических рядов в наследственной изменчивости закон гомологи́ческих рядо́в в насле́дственной изме́нчивости зако́н

Открытая рус. генетиком Н.И. Вавиловым в 1920 г. закономерность, устанавливающая параллелизм (сходство) в наследственной (генотипической) изменчивости у родственных организмов. В формулировке Вавилова закон гласит: «Виды и роды, генетически близкие между собой, характеризуются тождественными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм для одного вида, можно предвидеть нахождение тождественных форм у других видов и родов». При этом, чем ближе родство между видами, тем полнее сходство (гомология) в рядах их изменчивости. В законе обобщён огромный материал по изменчивости растений (злаков и других семейств), но он оказался справедливым и для изменчивости животных и микроорганизмов.
Явление параллельной изменчивости у близких родов и видов объясняется общностью их происхождения и, следовательно, наличием у них в генотипах значительной части одинаковых генов, полученных от общего предка и не изменившихся в процессе видообразования. При мутациях эти гены дают сходные признаки. Параллелизм в генотипической изменчивости у родственных видов проявляется параллелизмом фенотипической изменчивости, т.е. сходными признаками (фенотипами ).
Закон Вавилова является теоретической основой при выборе направлений и методов для получения хозяйственно-ценных признаков и свойств у культурных растений и домашних животных.

.(Источник: «Биология. Современная иллюстрированная энциклопедия.» Гл. ред. А. П. Горкин; М.: Росмэн, 2006.)


Смотреть что такое "гомологических рядов в наследственной изменчивости закон" в других словарях:

    См. Гомологических рядов в наследственной изменчивости закон. .(Источник: «Биология. Современная иллюстрированная энциклопедия.» Гл. ред. А. П. Горкин; М.: Росмэн, 2006.) …

    Устанавливает параллелизм в наследств, изменчивости организмов. Сформулирован Н. И. Вавиловым в 1920. Изучая изменчивость признаков у видов и родов злаков и др. семейств, Н. И. Вавилов обнаружил, что: 1. Виды и роды, генетически близкие между… … Биологический энциклопедический словарь

    Изменчивости, разработанный советским учёным Н. И. Вавиловым закон, устанавливающий параллелизм в изменчивости организмов. Ещё Ч. Дарвин (1859 68) обратил внимание на далеко идущий параллелизм в изменчивости (См. Изменчивость) близких… … Большая советская энциклопедия

    Гомологические ряды в наследственной изменчивости понятие, введенное Н. И. Вавиловым при исследовании параллелизмов в явлениях наследственной изменчивости по аналогии с гомологическими рядами органических соединений. Закономерности в… … Википедия

    Открытый Н. И. Вавиловым (1920) закон, согласно которому изменчивость близких по происхождению родов и видов растений осуществляется общим (параллельным) путем. Генетически близкие роды и виды характеризуются сходными рядами наследственной… … Экологический словарь

    В наследственной изменчивости сформулирован Н. И. Вавиловым в 1920, устанавливает параллелизм в изменчивости родственных групп растений. Как было показано позже, в основе этого явления лежит гомология генов (их одинаковое молекулярное строение) и … Большой Энциклопедический словарь

    В наследственной изменчивости, сформулирован Н. И. Вавиловым в 1920, устанавливает параллелизм в изменчивости родственных групп растений. Как было показано позже, в основе этого явления лежит гомология генов (их одинаковое молекулярное строение)… … Энциклопедический словарь

    гомологических рядов закон - в наследственной изменчивости, устанавливает параллелизм в наследств, изменчивости организмов. Открыт советским учёным Н. И. Вавиловым в 1920. Изучая изменчивость признаков у видов и родов семейства мятликовых и др., Вавилов обнаружил, что… … Сельское хозяйство. Большой энциклопедический словарь

    В наследственной изменчивости, сформулирован Н. И. Вавиловым в 1920, устанавливает параллелизм в изменчивости родственных групп р ний. Как было показано позлее, в основе этого явления лежит гомология генов (их одинаковое мол. строение) и… … Естествознание. Энциклопедический словарь

Книги

  • Закон гомологических рядов в наследственной изменчивости , Н. И. Вавилов. В книге впервые публикуются все три издания "Закона гомологических рядов в наследственной изменчивости", в том числе и английское 1922 г. Включены также работы, которые выходили только один…

МУТАЦИОННАЯ ИЗМЕНЧИВОСТЬ

План

Отличие мутаций от модификаций.

Классификация мутаций.

Закон Н.И.Вавилова

Мутации. Понятие мутации. Мутагенные факторы.

Мутации – это внезапные, стойкие,естественные или искусственные изменения генетического материала, возникающие под действием мутагенныхфакторов .

Виды мутагенных факторов:

А) физические – радиация, температура, электромагнитные излучения.

Б) химические факторы – вещества, которые вызывают отравление организма: алкоголь, никотин, формалин.

В) биологические - вирусы, бактерии.

Отличие мутаций от модификаций

Классификация мутаций

Существует несколько классификаций мутаций.

I Классификация мутаций по значению: полезные, вредные, нейтральные.

Полезные мутации приводят к повышенной устойчивости организма и являются материалом для естественного и искусственного отбора.

Вредные мутации снижают жизнеспособность и приводят к развитию наследственных заболеваний: гемофилия, серповидная клеточная анемия.

II Классификация мутаций по локализации или месту возникновении: соматические и генеративные.

Соматические возникают в клеткахтела и затрагивают лишь часть тела, при этом развиваются особи мозаики: разные глаза, окраска волос. Эти мутации наследуются только при вегетативном размножении (у смородины).

Генеративные происходят в половых клетках или в клетках, из которых образуются гаметы. Они делятся на ядерные и внеядерные (митохондриальные, пластидное).

III Мутации по характеру изменения генотипа: хромосомные, геномные, генные.

Генные (или точковые) не видны в микроскоп, связаны с изменением структуры гена. Эти мутации происходят в результате потери нуклеотида, вставки или замены одного нуклеотида другим. Эти мутации приводят к генным болезням: дальтонизму, фенилкетонурии.

Хромосомные (перестройки ) связаны с изменением структуры хромосом. Может произойти:

Делеция: - потеря участка хромосомы;

Дупликация – удвоение участка хромосомы;

Инверсия – поворот части хромосомы на 180 0 ;

Транслокация – обмен участками негомологичных хромосом и слияние двух негомологичных хромосом в одну.

Причины хромосомных мутаций : возникновение двух или более разрывов хромосом с последующим их соединением, но в неправильном порядке.

Геномные мутации приводят к изменению числа хромосом. Различают гетероплоидию и полиплоидию.

Гетероплоидия связана с изменением числом хромосом, на нескольких хромосомах – 1.2.3. Причины : не расхождение хромосом в мейозе:

- Моносомия – уменьшением числа хромосом на 1 хромосому. Общая формула хромосомного набора 2n-1.

- Трисономия – увеличение числа хромосом на 1. Общая формула 2n+1 (47 хромосом Синдром Кланфейтера; трисономия по 21 паре хромосом – синдром Дауна (признаки множественные врожденные пороки, снижающие жизнеспособность организма и нарушение умственного развития).

Полиплодия – кратное изменение числа хромосом. У полиплоидных организмов гаплоидный (n) набор хромосом в клетках повторяется не 2 раза, как у диплоидных, а 4-6 раз, иногда значительно больше – до 10-12 раз.

Возникновение полиплоидов связано с нарушением митоза или мейоза. В частности, не расхождение гомологичных хромосом в мейозе приводит к формированию гамет с увеличенным числом хромосом. У диплоидных организмов в результате такого процесса могут образовываться диплоидные (2n) гаметы.

Широко встречается у культурных растений: гречихи, подсолнуха и т.д., а так же у дикорастущих.

Закон Н.И.Вавилова (закон гомологичных рядов наследственной изменчивости).

/С давних времен исследователи наблюдали существование сходных признаков у разных видов и родов одного семейства, например дыни, похожие на огурцы, или арбузы, похожие на дыни. Эти факты легли в основу закона гомологических рядов в наследственной изменчивости./

Множественный аллелизм. Параллельная изменчивость . Ген может находиться более чем в двух состояниях. Разнообразие аллелей одного гена получило название множественного аллелизма . Разные аллели определяют разную степень одного и того же признака. Чем больше аллелей несут особи популяций, тем более пластичен вид, лучше приспособлен к меняющимся условиям среды обитания.

Множественный аллелизм лежит в основе параллельной изменчивости – явления, при котором возникают сходные признаки у разных видов и родов одного семейства. Систематизировал факты параллельной изменчивости Н.И.Вавилов./

Н.И.Вавилов сравнивал виды семейства Злаки. Он выяснил, что если мягкая пшеница имеет формы озимые и яровые, остистые и безостые, то такие же формы обязательно обнаруживаются и у твердой пшеницы. Более того, состав признаков. По которым различаются формы внутри вида и рода, оказывается часто таким же в других родах. Например, формы ржи и ячменя повторяют формы разных видов пшеницы, причем образуя те же параллельные, или гомологичные ряды наследственной изменчивости.

Систематизация фактов позволила Н.И.Вавилову сформулировать закон гомологичных рядов в наследственной изменчивости (1920г): виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью. Что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов.

Гомологичность наследственных признаков близких видов и родов объясняется гомологичностью их генов, так как они произошли от одного вида-родоначальника. Кроме того, мутационный процесс у генетически близких видов протекает сходно. Поэтому у них возникают сходные серии рецессивных аллелей и в результате – параллельные признаки.

Вывод из закона Вавилова : каждый вид имеет определенные границы мутационной изменчивости. К изменениям, выходящим за пределы спектра наследственной изменчивости вида, никакой мутационный процесс привести не может. Так, у млекопитающих мутации могут изменить цвет шерсти от черного к бурому, рыжему, белому, может возникнуть полосатость, пятнистость, но возникновение зеленой окраски исключено.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-12

Публикации по теме